
14 Di�ie-Hellman Key Agreement

14.1 Cyclic Groups

Definition 14.1 Let д ∈ Z∗n . De�ne 〈д〉n = {д
i % n | i ∈ Z}, the set of all powers of д reduced mod n. Then д

is called a generator of 〈д〉n , and 〈д〉n is called the cyclic group generated by д mod n.
If 〈д〉n = Z∗n , then we say that д is a primitive root mod n.

The de�nition allows the generator д to be raised to a negative integer. Since д ∈ Z∗n ,
it is guaranteed that д has a multiplicative inverse mod n, which we can call д−1. Then д−i

can be de�ned as д−i def
= (д−1)i . All of the usual laws of exponents hold with respect to

this de�nition of negative exponents.

Example Taking n = 13, we have:

〈1〉13 = {1}
〈2〉13 = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7} = Z∗13
〈3〉13 = {1, 3, 9}

Thus 2 is a primitive root modulo 13. Each of the groups {1}, Z∗13, {1, 3, 9} is a cyclic group
under multiplication mod 13.

A cyclic group may have more than one generator, for example:

〈3〉13 = 〈9〉13 = {1, 3, 9}

Similarly, there are four primitive roots modulo 13 (equivalently, Z∗13 has four di�erent gen-
erators); they are 2, 6, 7, and 11.

Not every integer has a primitive root. For example, there is no primitive root modulo
15. However, when p is a prime, there is always a primitive root modulo p (and so Z∗p is a
cyclic group).

Let us write G = 〈д〉 = {дi | i ∈ Z} to denote an unspeci�ed cyclic group generated by
д. The de�ning property of G is that each of its elements can be written as a power of д.
From this we can conclude that:

I Any cyclic group is closed under multiplication. That is, take any X ,Y ∈ G; then
it must be possible to write X = дx and Y = дy for some integers x ,y. Using the
multiplication operation of G, the product is XY = дx+y , which is also in G.

I Any cyclic group is closed under inverses. Take any X ∈ G; then it must be possible
to write X = дx for some integer x . We can then see that д−x ∈ G by de�nition, and
д−xX = д−x+x = д0 is the identity element. So X has a multiplicative inverse (д−x )
in G.

These facts demonstrate that G is indeed a group in the terminology of abstract algebra.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com


Draft: January 3, 2021 CHAPTER 14. DIFFIE-HELLMAN KEY AGREEMENT

Discrete Logarithms

It is typically easy to compute the value of дx in a cyclic group, given д and x . For ex-
ample, when using a cyclic group of the form Z∗n , we can easily compute the modular
exponentiation дx % n using repeated squaring.

The inverse operation in a cyclic group is called the discrete logarithm problem:

Definition 14.2

(Discrete Log)

The discrete logarithm problem is: givenX ∈ 〈д〉, determine a number x such thatдx = X .
Here the exponentiation is with respect to the multiplication operation in G = 〈д〉.

The discrete logarithm problem is conjectured to be hard (that is, no polynomial-time
algorithm exists for the problem) in certain kinds of cyclic groups.

14.2 Di�ie-Hellman Key Agreement

Key agreement refers to the problem of establishing a private channel using public com-
munication. Suppose Alice & Bob have never spoken before and have no shared secrets.
By exchanging publicmessages (i.e., that can be seen by any external observer), they would
like to establish a secret that is known only to the two of them.

The Di�e-Hellman protocol is such a key-agreement protocol, and it was the �rst
published instance of public-key cryptography:

Construction 14.3

(Di�ie-Hellman)

Both parties agree (publicly) on a cyclic group G with generator д. Let n = |G|. All exponen-
tiations are with respect to the group operation in G.

1. Alice chooses a ← Zn . She sends A = дa to Bob.

2. Bob chooses b ← Zn . He sends B = дb to Alice.

3. Bob locally outputs K := Ab . Alice locally outputs K := Ba .

Alice Bob
a ← Zn

b ← Zn

A = дa

B = дb

return Ba return Ab

By substituting and applying standard rules of exponents, we see that both parties
output a common value, namely K = дab ∈ G.

Defining Security for Key Agreement

Executing a key agreement protocol leaves two artifacts behind. First, we have the col-
lection of messages that are exchanged between the two parties. We call this collection a
transcript. We envision two parties executing a key agreement protocol in the presence
of an eavesdropper, and hence we imagine that the transcript is public. Second, we have
the key that is output by the parties, which is private.
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To de�ne security of key agreement, we would like to require that the transcript leaks
no (useful) information to the eavesdropper about the key. There are a few ways to ap-
proach the de�nition:

I We could require that it is hard to compute the key given the transcript. However,
this turns out to be a rather weak de�nition. For example, it does not rule out the
possibility that an eavesdropper could guess the �rst half of the bits of the key.

I We could require that the key is pseudorandom given the transcript. This is a better
de�nition, and the one we use. To formalize this idea, we de�ne two libraries. In both
libraries the adversary / calling program can obtain the transcript of an execution
of the key agreement protocol. In one library the adversary obtains the key that
resulted from the protocol execution, while in the other library the adversary obtains
a totally unrelated key (chosen uniformly from the set Σ.K of possible keys).

Definition 14.4

(KA security)

Let Σ be a key-agreement protocol. We write Σ.K for the keyspace of the protocol ( i.e., the
set of possible keys it produces). We write (t ,K) ← execprot(Σ) to denote the process of
executing the protocol between two honest parties, where t denotes the resulting transcript, and
K is resulting key. Note that this process is randomized, and that K is presumably correlated
to t .

We say that Σ is secure if LΣ
ka-real

∼∼∼ L
Σ
ka-rand

, where:

LΣ
ka-real

qery():
(t ,K) ← execprot(Σ)
return (t ,K)

LΣ
ka-rand

qery():
(t ,K) ← execprot(Σ)
K ′← Σ.K
return (t ,K ′)

14.3 Decisional Di�ie-Hellman Problem

The Di�e Hellman protocol is parameterized by the choice of cyclic groupG (and genera-
tor д). Transcripts in the protocol consist of (дa ,дb ), where a and b are chosen uniformly.
The key corresponding to such a transcript is дab . The set of possible keys is the cyclic
group G.

Let us substitute the details of the Di�e-Hellman protocol into the KA security li-
braries. After simplifying, we see that the security of the Di�e Hellman protocol is equiv-
alent to the following statement:

LG
dh-real

qery():
a,b ← Zn
return (дa ,дb ,дab )

∼∼∼

LG
dh-rand

qery():
a,b, c ← Zn
return (дa ,дb ,дc )

We have renamed the libraries to Ldh-real and Ldh-rand. In Ldh-real the response to qery
corresponds to a DHKA transcript (дa ,дb ) along with the corresponding “correct” key
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дab . The response in Ldh-rand corresponds to a DHKA transcript along with a completely
independent random key дc .

Definition 14.5

(DDH)

The decisional Di�e-Hellman (DDH) assumption in a cyclic group G is that LG
dh-real

∼∼∼

LG
dh-rand

(libraries de�ned above).

Since we have de�ned the DDH assumption by simply renaming the security de�nition
for DHKA, we immediately have:

Claim 14.6 The DHKA protocol is a secure KA protocol if and only if the DDH assumption is true for
the choice of G used in the protocol.

For Which Groups does the DDH Assumption Hold?

So far our only example of a cyclic group is Z∗p , where p is a prime. Although many
textbooks describe DHKA in terms of this cyclic group, it is not a good choice because the
DDH assumption is demonstrably false in Z∗p . To see why, we introduce a new concept:

Claim 14.7

(Euler criterion)

If p is a prime and X = дx ∈ Z∗p , then X
p−1
2 ≡p (−1)x .

Note that (−1)x is 1 if x is even and −1 if x is odd. So, while in general it is hard to
determine x given дx , Euler’s criterion says that it is possible to determine the parity of x
(i.e., whether x is even or odd) given дx .

To see how these observations lead to an attack against the Di�e-Hellman protocol,
consider the following attack:

A:
(A,B,C) ←qery()
return 1

?
≡p C

p−1
2

Roughly speaking, the adversary returns true whenever C can be written as д raised to
an even exponent. When linked to Ldh-real, C = дab where a and b are chosen uniformly.
Henceab will be even with probability 3/4. When linked toLdh-rand,C = дc for an indepen-
dent random c . So c is even only with probability 1/2. Hence the adversary distinguishes
the libraries with advantage 1/4.

Concretely, with this choice of group, the key дab will never be uniformly distributed.
See the exercises for a slightly better attack which correlates the key to the transcript.

Quadratic Residues. Several better choices of cyclic groups have been proposed in the
literature. Arguably the simplest one is based on the following de�nition:

Definition 14.8 A number X ∈ Z∗n is a quadratic residue modulo n if there exists some integer Y such that
Y 2 ≡n X . That is, if X can be obtained by squaring a number mod n. Let QR∗n ⊆ Z

∗
n denote

the set of quadratic residues mod n.

For our purposes it is enough to know that, when p is prime, QR∗p is a cyclic group with
(p − 1)/2 elements (see the exercises). When both p and (p − 1)/2 are prime, we call p a
safe prime (and call (p − 1)/2 a Sophie Germain prime). To the best of our knowledge the
DDH assumption is true in QR∗p when p is a safe prime.
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Exercises

14.1. Let p be an odd prime, as usual. Recall that QR∗p is the set of quadratic residues mod p
— that is, QR∗p = {x ∈ Z∗p | ∃y : x ≡p y2}. Show that if д is a primitive root of Z∗p then
〈д2〉 = QR∗p .

Note: This means that дa ∈ QR∗p if and only if a is even — and in particular, the choice of
generator д doesn’t matter.

14.2. Suppose N = pq where p and q are distinct primes. Show that |QR∗N | = |QR
∗
p | · |QR

∗
q |.

Hint:

Chineseremaindertheorem.

14.3. Suppose you are given X ∈ 〈д〉. You are allowed to choose any X ′ , X and learn the
discrete log of X ′ (with respect to base д). Show that you can use this ability to learn the
discrete log of X .

14.4. Let 〈д〉 be a cyclic group with n elements and generator д. Show that for all integers a, it
is true that дa = дa%n .

Note: As a result, 〈д〉 is isomorphic to the additive group Zn .

14.5. Letд be a primitive root of Z∗n . Recall that Z∗n hasϕ(n) elements. Show thatдa is a primitive
root of Z∗n if and only if gcd(a,ϕ(n)) = 1.

Note: It follows that, for every n, there are either 0 or ϕ(ϕ(n)) primitive roots mod n.

14.6. Let 〈д〉 be a cyclic group with n elements. Show that for all x ,y ∈ 〈д〉, it is true that
xn = yn .

Hint:

Everyx∈〈д〉canbewrittenasx=дaforsomeappropriatea.Whatis(дa)n?

14.7. (a) Prove the following variant of Lemma 4.10: Suppose you �x a value x ∈ ZN . Then
when sampling q =

√
2N values r1, . . . , rq uniformly from ZN , with probability at

least 0.6 there exist i , j with ri ≡N r j + x .

(b) Let д be a primitive root of Z∗p (for some prime p). Consider the problem of computing
the discrete log of X ∈ Z∗p with respect to д — that is, �nding x such that X ≡p дx .
Argue that if one can �nd integers r and s such that дr ≡p X ·дs then one can compute
the discrete log of X .

(c) Combine the above two observations to describe a O(√p)-time algorithm for the dis-
crete logarithm problem in Z∗p .

14.8. In an execution of DHKA, the eavesdropper observes the following values:

p = 461733370363 A = 114088419126
д = 2 B = 276312808197

What will be Alice & Bob’s shared key?

14.9. Explain what is wrong in the following argument:
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In Di�e-Hellman key agreement, Alice sendsA = дa and Bob sends B = дb . Their
shared key is дab . To break the scheme, the eavesdropper can simply compute
A · B = (дa)(дb ) = дab .

14.10. LetG be a cyclic group withn elements and generatorд. Consider the following algorithm:

rand(A,B,C):
r , s, t ← Zn
A′ := Atдr

B′ := Bдs

C ′ := CtBrAstдr s

return (A′,B′,C ′)

Let DH = {(дa ,дb ,дab ) ∈ G3 | a,b, ∈ Zn}.

(a) Suppose (A,B,C) ∈ DH . Show that the output distribution of rand(A,B,C) is the
uniform distribution over DH

(b) Suppose (A,B,C) < DH . Show that the output distribution of rand(A,B,C) is the
uniform distribution over G3.

? (c) Consider the problem of determining whether a given triple (A,B,C) is in the set DH .
Suppose you have an algorithm A that solves this problem on average slightly better
than chance. That is:

Pr[A(A,B,C) = 1] > 0.51 when (A,B,C) chosen uniformly in DH

Pr[A(A,B,C) = 0] > 0.51 when (A,B,C) chosen uniformly in G3

The algorithmA does not seem very useful if you have a particular triple (A,B,C) and
you really want to know whether it is in DH . You might have one of the triples for
which A gives the wrong answer, and there’s no real way to know.
Show how to construct a randomized algorithmA ′ such that: for every (A,B,C) ∈ G3:

Pr
[
A ′(A,B,C) = [(A,B,C)

?
∈ DH ]

]
> 0.99

Here the input A,B,C is �xed and the probability is over the internal randomness in
A ′. So on every possible input, A ′ gives a very reliable answer.

to-do better attack against Z∗p instantiation of DHKA
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