
4 Basing Cryptography on

Intractable Computations

John Nash was a mathematician who earned the 1994 Nobel Prize in Economics for his
work in game theory. His life story was made into a successful movie, A Beautiful Mind.

In 1955, Nash was in correspondence with the United States National Security Agency
(NSA),1 discussing new methods of encryption that he had devised. In these letters, he also
proposes some general principles of cryptography (bold highlighting not in the original):

. . . in principle the enemy needs very little information to begin to break down
the process. Essentially, as soon as λ bits2 of enciphered message have been trans-
mitted the key is about determined. This is no security, for a practical key should
not be too long. But this does not consider how easy or di�cult it is for
the enemy to make the computation determining the key. If this com-
putation, although possible in principle, were su�ciently long at best
then the process could still be secure in a practical sense.

Nash is saying something quite profound: it doesn’t really matter whether attacks
are impossible, only whether attacks are computationally infeasible. If his letters
hadn’t been kept classi�ed until 2012, they might have accelerated the development of
“modern” cryptography, in which security is based on intractable computations. As it
stands, he was decades ahead of his time in identifying one of the most important concepts
in modern cryptography.

4.1 What �alifies as a “Computationally Infeasible” A�ack?

Schemes like one-time pad cannot be broken, even by an attacker that performs a brute-
force attack, trying all possible keys (see Exercise 1.5). However, all future schemes that
we will see can indeed be broken by such an attack. Nash is quick to point out that, for a
scheme with λ-bit keys:

The most direct computation procedure would be for the enemy to try all 2λ
possible keys, one by one. Obviously this is easilymade impractical for the enemy
by simply choosing λ large enough.

1The original letters, handwritten by Nash, are available at: h�ps://www.nsa.gov/Portals/70/documents/

news-features/declassified-documents/nash-le�ers/nash_le�ers1.pdf.
2Nash originally used r to denote the length of the key, in bits. In all of the excerpts quoted in this chapter,

I have translated his mathematical expressions into our notation (λ).
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We call λ the security parameter of the scheme. It is like a knob that allows the
user to tune the security to any desired level. Increasing λ makes the di�culty of a brute-
force attack grow exponentially fast. Ideally, when using λ-bit keys, every attack (not just
a brute-force attack) will have di�culty roughy 2λ . However, sometimes faster attacks
are inevitable. Later in this chapter, we will see why many schemes with λ-bit keys have
attacks that cost only 2λ/2. It is common to see a scheme described as havingn-bit security
if the best known attack requires 2n steps.

Just how impractical is a brute-force computation on a 64-bit key? A 128-bit key?
Huge numbers like 264 and 2128 are hard to grasp at an intuitive level.

Example It can be helpful to think of the cost of a computation in terms of monetary value, and a
convenient way to assign such monetary costs is to use the pricing model of a cloud computing
provider. Below, I have calculated roughly how much a computation involving 2λ CPU cycles
would cost on Amazon EC2, for various choices of λ.3

clock cycles approx cost reference
250 $3.50 cup of co�ee
255 $100 decent tickets to a Portland Trailblazers game
265 $130,000 median home price in Oshkosh, WI
275 $130 million budget of one of the Harry Potter movies
285 $140 billion GDP of Hungary
292 $20 trillion GDP of the United States
299 $2 quadrillion all of human economic activity since 300,000 BC4

2128 really a lot a billion human civilizations’ worth of e�ort

Remember, this table only shows the cost to perform 2λ clock cycles. A brute-force attack
checking 2λ keys would take many more cycles than that! But, as a disclaimer, these numbers
re�ect only the retail cost of performing a computation, on fairly standard general-purpose
hardware. A government organization would be capable of manufacturing special-purpose
hardware that would signi�cantly reduce the computation’s cost. The exercises explore some
of these issues, as well as non-�nancial ways of conceptualizing the cost of huge computations.

Example In 2017, the �rst collision in the SHA-1 hash function was found (wewill discuss hash functions
later in the course). The attack involved evaluating the SHA-1 function 263 times on a cluster
of GPUs. An article in Ars Technica5 estimates the monetary cost of the attack as follows:

Had the researchers performed their attack on Amazon’s Web Services platform,
it would have cost $560,000 at normal pricing. Had the researchers been patient
and waited to run their attack during o�-peak hours, the same collision would
have cost $110,000.

3As of October 2018, the cheapest class of CPU that is suitable for an intensive computation is the
m5.large, which is a 2.5 GHz CPU. Such a CPU performs 243 clock cycles per hour. The cheapest rate on
EC2 for this CPU is 0.044 USD per hour (3-year reserved instances, all costs paid upfront). All in all, the cost
for a single clock cycle (rounding down) is 2−48 USD.

4I found some estimates (h�ps://en.wikipedia.org/wiki/Gross_world_product) of the gross world product
(like the GDP but for the entire world) throughout human history, and summed them up for every year.

5
h�ps://arstechnica.com/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
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Asymptotic Running Time

It is instructive to think about the monetary cost of an enormous computation, but it
doesn’t necessarily help us draw the line between “feasible” attacks (which we want to
protect against) and “infeasible” ones (which we agreed we don’t need to care about). We
need to be able to draw such a line in order to make security de�nitions that say “only
feasible attacks are ruled out.”

Once again, John Nash thought about this question. He suggested to consider the
asymptotic cost of an attack — how does the cost of a computation scale as the security
parameter λ goes to in�nity?

So a logical way to classify enciphering processes is by the way in which the
computation length for the computation of the key increases with in-
creasing length of the key. This is at best exponential and at worst proba-
bly a relatively small power of λ, a · λ2 or a · λ3, as in substitution ciphers.

Nash highlights the importance of attacks that run in polynomial time:

Definition 4.1 A program runs in polynomial time if there exists a constant c > 0 such that for all su�-
ciently long input strings x , the program stops after no more than O(|x |c ) steps.

Polynomial-time algorithms scale reasonably well (especially when the exponent is small),
but exponential-time algorithms don’t. It is probably no surprise to modern readers to see
“polynomial-time” as a synonym for “e�cient.” However, it’s worth pointing out that,
again, Nash is years ahead of his time relative to the �eld of computer science.

In the context of cryptography, our goal will be to ensure that no polynomial-time
attack can successfully break security. We will not worry about attacks like brute-force
that require exponential time.

Polynomial time is not a perfect match to what we mean when we informally talk about
“e�cient” algorithms. Algorithms with running time Θ(n1000) are technically polynomial-
time, while those with running time Θ(nlog log logn) aren’t. Despite that, polynomial-time is
extremely useful because of the following closure property: repeating a polynomial-time
process a polynomial number of times results in a polynomial-time process overall.

Potential Pitfall: Numerical Algorithms

When we study public-key cryptography, we will discuss algorithms that operate on very
large numbers (e.g., thousands of bits long). You must remember that representing the
number N on a computer requires only ∼ log2 N bits. This means that log2 N , rather than
N , is our security parameter! We will therefore be interested in whether certain operations
on the number N run in polynomial-time as a function of log2 N , rather than in N . Keep
in mind that the di�erence between running time O(logN ) and O(N ) is the di�erence
between writing down a number and counting to the number.

For reference, here are some numerical operations that we will be using later in the
class, and their known e�ciencies:
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E�cient algorithm known: No known e�cient algorithm:
Computing GCDs Factoring integers
Arithmetic mod N Computing ϕ(N ) given N
Inverses mod N Discrete logarithm
Exponentiation mod N Square roots mod composite N

Again, “e�cient” means polynomial-time. Furthermore, we only consider polynomial-
time algorithms that run on standard, classical computers. In fact, all of the problems in the
right-hand column do have known polynomial-time algorithms on quantum computers.

4.2 What �alifies as a “Negligible” Success Probability?

It is not enough to consider only the running time of an attack. For example, consider an
attacker who just tries to guess a victim’s secret key, making a single guess. This attack is
extremely cheap, but it still has a nonzero chance of breaking security!

In addition to an attack’s running time, we also need to consider its success probability.
We don’t want to worry about attacks that are as expensive as a brute-force attack, and
we don’t want to worry about attacks whose success probability is as low as a blind-guess
attack.

An attack with success probability 2−128 should not really count as an attack, but an
attack with success probability 1/2 should. Somewhere in between 2−128 and 2−1 we need
to �nd a reasonable place to draw a line.

Example Now we are dealing with extremely tiny probabilities that can be hard to visualize. Again, it
can be helpful to conceptualize these probabilities with a more familiar reference:

probability equivalent
2−10 full house in 5-card poker
2−20 royal �ush in 5-card poker
2−28 you win this week’s Powerball jackpot
2−40 royal �ush in 2 consecutive poker games
2−60 the next meteorite that hits Earth lands in this square→

As before, it is not clear exactly where to draw the line between “reasonable” and “un-
reasonable” success probability for an attack. Just like we did with polynomial running
time, we can also use an asymptotic approach to de�ne when a probability is negligi-
bly small. Just as “polynomial time” considers how fast an algorithm’s running time ap-
proaches in�nity as its input grows, we can also consider how fast a success probability
approaches zero as the security parameter grows.

In a scheme with λ-bit keys, a blind-guessing attack succeeds with probability 1/2λ .
Now what about an attacker who makes 2 blind guesses, or λ guesses, or λ42 guesses? Such
an attacker would still run in polynomial time, and has success probability 2/2λ , λ/2λ , or
λ42/2λ . However, no matter what polynomial you put in the numerator, the probability still
goes to zero. Indeed, 1/2λ approaches zero so fast that no polynomial can “rescue”
it; or, in other words, it approaches zero faster than 1 over any polynomial. This idea leads
to our formal de�nition:
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Definition 4.2

(Negligible)

A function f is negligible if, for every polynomial p, we have lim
λ→∞

p(λ)f (λ) = 0.

In other words, a negligible function approaches zero so fast that you can never catch
up when multiplying by a polynomial. This is exactly the property we want from a se-
curity guarantee that is supposed to hold against all polynomial-time adversaries. If a
polynomial-time attacker succeeds with probability f , then repeating the same attack p
independent times would still be an overall polynomial-time attack (if p is a polynomial),
and its success probability would be p · f .

When you want to check whether a function is negligible, you only have to consider
polynomials p of the form p(λ) = λc for some constant c:

Claim 4.3 If for every integer c , lim
λ→∞

λc f (λ) = 0, then f is negligible.

Proof Suppose f has this property, and take an arbitrary polynomial p. We want to show that
limλ→∞ p(λ)f (λ) = 0.

If d is the degree of p, then limλ→∞
p(λ)
λd+1 = 0. Therefore,

lim
λ→∞

p(λ)f (λ) = lim
λ→∞

[
p(λ)

λd+1

(
λd+1 · f (λ)

)]
=

(
lim
λ→∞

p(λ)

λd+1

) (
lim
λ→∞

λd+1 · f (λ)

)
= 0 · 0.

The second equality is a valid law for limits since the two limits on the right exist and are
not an indeterminate expression like 0 · ∞. The �nal equality follows from the hypothesis
on f . �

Example The function f (λ) = 1/2λ is negligible, since for any integer c , we have:

lim
λ→∞

λc/2λ = lim
λ→∞

2c log(λ)/2λ = lim
λ→∞

2c log(λ)−λ = 0,

since c log(λ) − λ approaches −∞ in the limit, for any constant c . Using similar reasoning,
one can show that the following functions are also negligible:

1
2λ/2
,

1
2
√
λ
,

1
2log2 λ

,
1

λlog λ
.

Functions like 1/λ5 approach zero but not fast enough to be negligible. To see why, we can
take polynomial p(λ) = λ6 and see that the resulting limit does not satisfy the requirement
from De�nition 4.2:

lim
λ→∞

p(λ)
1
λ5
= lim
λ→∞

λ = ∞ , 0

In this class, when we see a negligible function, it will typically always be one that
is easy to recognize as negligible (just as in an undergraduate algorithms course, you
won’t really encounter algorithms where it’s hard to tell whether the running time is
polynomial).

Definition 4.4

(f ≈ д)

If f ,д : N → R are two functions, we write f ≈ д to mean that
��f (λ) − д(λ)�� is a negligible

function.
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We use the terminology of negligible functions exclusively when discussing probabilities,
so the following are common:

Pr[X ] ≈ 0 ⇔ “event X almost never happens”
Pr[Y ] ≈ 1 ⇔ “event Y almost always happens”

Pr[A] ≈ Pr[B] ⇔ “events A and B happen with
essentially the same probability”6

Additionally, the ≈ symbol is transitive:7 if Pr[X ] ≈ Pr[Y ] and Pr[Y ] ≈ Pr[Z ], then Pr[X ] ≈
Pr[Z ] (perhaps with a slightly larger, but still negligible, di�erence).

4.3 Indistinguishability

So far we have been writing formal security de�nitions in terms of interchangeable li-
braries, which requires that two libraries have exactly the same e�ect on every calling
program. Going forward, our security de�nitions will not be quite as demanding. First,
we only consider polynomial-time calling programs; second, we don’t require the libraries
to have exactly the same e�ect on the calling program, only that the di�erence in e�ects
is negligible.

Definition 4.5

(Indistinguishable)

Let Lle� and Lright be two libraries with a common interface. We say that Lle� and Lright

are indistinguishable, and writeLle�

∼∼∼ Lright, if for all polynomial-time programsA that
output a single bit, Pr[A � Lle� ⇒ 1] ≈ Pr[A � Lright ⇒ 1].

We call the quantity
�� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]

�� the advantage or bias
of A in distinguishing Lle� from Lright. Two libraries are therefore indistinguishable if all
polynomial-time calling programs have negligible advantage in distinguishing them.

From the properties of the “≈” symbol, we can see that indistinguishability of libraries is
also transitive, which allows us to carry out hybrid proofs of security in the same way as
before.

Example Here is a very simple example of two indistinguishable libraries:

Lle�

predict(x):
s ← {0, 1}λ

return x
?
= s

Lright

predict(x):
return false

6Pr[A] ≈ Pr[B] doesn’t mean that events A and B almost always happen together (when A and B are
de�ned over a common probability space) — imagine A being the event “the coin came up heads” and B being
the event “the coin came up tails.” These events have the same probability but never happen together. To say
that “A and B almost always happen together,” you’d have to say something like Pr[A ⊕ B] ≈ 0, where A ⊕ B
denotes the event that exactly one of A and B happens.

7It’s only transitive when applied a polynomial number of times. So you can’t de�ne a whole series of
events Xi , show that Pr[Xi ] ≈ Pr[Xi+1], and conclude that Pr[X1] ≈ Pr[X2n ]. It’s rare that we’ll encounter
this subtlety in this course.

72



Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Imagine the calling program trying to predict which string will be chosen when uniformly
sampling from {0, 1}λ . The left library tells the calling program whether its prediction was
correct. The right library doesn’t even bother sampling a string, it just always says “sorry,
your prediction was wrong.”

Here is one obvious strategy (maybe not the best one, we will see) to distinguish these
libraries. The calling program Aobvious calls predict many times and outputs 1 if it ever
received true as a response. Since it seems like the argument to predict might not have any
e�ect, let’s just use the string of all-0s as argument every time.

Aobvious

do q times:
if predict(0λ) = true

return 1
return 0

I Lright can never return true, so Pr[Aobvious � Lright ⇒ 1] = 0.

I In Lle� each call to predict has an independent probability 1/2λ of returning true.
So Pr[Aobvious � Lle� ⇒ 1] is surely non-zero. Actually, the exact probability is a bit
cumbersome to write:

Pr[Aobvious � Lle� ⇒ 1] = 1 − Pr[Aobvious � Lle� ⇒ 0]
= 1 − Pr[all q independent calls to predict return false]

= 1 −
(
1 −

1
2λ

)q
Rather than understand this probability, we can just compute an upper bound for it.
Using the union bound, we get:

Pr[Aobvious � Lle� ⇒ 1] 6 Pr[�rst call to predict returns true]
+ Pr[second call to predict returns true] + · · ·

= q
1
2λ

This is an overestimate of some probabilities (e.g., if the �rst call to predict returns
true, then the second call isn’t made). More fundamentally, q/2λ exceeds 1 when q is
large. But nevertheless, Pr[Aobvious � Lle� ⇒ 1] 6 q/2λ .

We showed thatAobvious has non-zero advantage. This is enough to show that Lle� . Lright.
We also showed that Aobvious has advantage at most q/2λ . Since Aobvious runs in poly-

nomial time, it can only make a polynomial number q of queries to the library, so q/2λ is
negligible. However, this is not enough to show that Lle�

∼∼∼ Lright since it considers only a
single calling program. To show that the libraries are indistinguishable, we must show that
every calling program’s advantage is negligible.

In a few pages, we will prove that for any A that makes q calls to predict,��� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]
��� 6 q

2λ
.

For any polynomial-time A, the number q of calls to predict will be a polynomial in λ,
making q/2λ a negligible function. Hence, Lle�

∼∼∼ Lright.
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Other Properties

Lemma 4.6

(
∼∼∼ facts)

If L1 ≡ L2 then L1

∼∼∼ L2. Also, if L1

∼∼∼ L2

∼∼∼ L3 then L1

∼∼∼ L3.

Analogous to Lemma 2.11, we also have the following library chaining lemma, which
you are asked to prove as an exercise:

Lemma 4.7

(Chaining)

If Lle�

∼∼∼ Lright then L∗ � Lle�

∼∼∼ L
∗ � Lright for any polynomial-time library L∗.

Bad-Event Lemma

A common situation is when two libraries are expected to execute exactly the same state-
ments, until some rare & exceptional condition happens. In that case, we can bound an
attacker’s distinguishing advantage by the probability of the exceptional condition.

More formally,

Lemma 4.8

(Bad events)

Let Lle� and Lright be libraries that each de�ne a variable named ‘bad’ that is initialized to
0. If Lle� and Lright have identical code, except for code blocks reachable only when bad = 1
(e.g., guarded by an “if bad = 1” statement), then��� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]

��� 6 Pr[A � Lle� sets bad = 1].

Proof? Fix an arbitrary calling program A. In this proof, we use conditional probabilites8 to
isolate the cases where bad is changed to 1. We de�ne the following events:

I Ble�: the event that A �Lle� sets bad to 1 at some point.

I Bright: the event that A �Lright sets bad to 1 at some point.

We also write Ble� and Bright to denote the corresponding complement events. From con-
ditional probability, we can write:

Pr[A � Lle� ⇒ 1] = Pr[A � Lle� ⇒ 1 | Ble�] Pr[Ble�]

+ Pr[A � Lle� ⇒ 1 | Ble�] Pr[Ble�]

Pr[A � Lright ⇒ 1] = Pr[A � Lright ⇒ 1 | Bright] Pr[Bright]

+ Pr[A � Lright ⇒ 1 | Bright] Pr[Bright]

Our �rst observation is that Pr[Ble�] = Pr[Bright]. This is because at the time bad is
changed to 1 for the �rst time, the library has only been executing instructions that are
the same in Lle� and Lright. In other words, the choice to set bad to 1 is determined by
the same sequence of instructions in both libraries, so it occurs with the same probability
in both libraries.

As a shorthand notation, we de�ne p∗ def
= Pr[Ble�] = Pr[Bright]. Then we can write the

advantage of A as:

advantageA =

��� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]
���

8The use of conditional probabilites here is delicate and prone to subtle mistakes. For a discussion of the
pitfalls, consult the paper where this lemma �rst appeared: Mihir Bellare & Phillip Rogaway: “Code-Based
Game-Playing Proofs and the Security of Triple Encryption,” in Eurocrypt 2006. ia.cr/2004/331
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=

������
(
Pr[A � Lle� ⇒ 1 | Ble�] · p

∗ + Pr[A � Lle� ⇒ 1 | Ble�](1 − p∗)
)

−

(
Pr[A � Lright ⇒ 1 | Bright] · p

∗ + Pr[A � Lright ⇒ 1 | Bright](1 − p∗)
) ������

=

������ p∗
(
Pr[A � Lle� ⇒ 1 | Ble�] − Pr[A � Lright ⇒ 1 | Bright]

)
(1 − p∗)

(
Pr[A � Lle� ⇒ 1 | Ble�] − Pr[A � Lright ⇒ 1 | Bright]

) ������
In both of the expressions Pr[A � Lle� ⇒ 1 | Ble�] and Pr[A � Lright ⇒ 1 | Bright], we
are conditioning on bad never being set to 0. In this case, both libraries are executing
the same sequence of instructions, so the probabilities are equal (and the di�erence of the
probabilities is zero). Substituting in, we get:

advantageA = p
∗
��� Pr[A � Lle� ⇒ 1 | Ble�] − Pr[A � Lright ⇒ 1 | Bright]

���
Intuitively, the proof is con�rming the idea that di�erences can only be noticed between
Lle� andLright when bad is set to 1 (corresponding to our conditioning onBle� andBright).

The quantity within the absolute value is the di�erence of two probabilities, so the
largest it can be is 1. Therefore,

advantageA 6 p
∗ def
= Pr[Ble�] = Pr[A � Lle� sets bad = 1].

This completes the proof. �

Example Consider Lle� and Lright from the previous example (where the calling program tries to “pre-
dict” the result of uniformly sampling a λ-bit string). We can prove that they are indistin-
guishable with the following sequence of hybrids:

Lle�

predict(x):
s ← {0, 1}λ

return x
?
= s

≡

Lhyb-L

bad := 0

predict(x):
s ← {0, 1}λ

if x = s:
bad := 1
return true

return false

∼∼∼

Lhyb-R

bad := 0

predict(x):
s ← {0, 1}λ

if x = s:
bad := 1

return false

≡

Lright

predict(x):
return false

Let us justify each of the steps:

I Lle� ≡ Lhyb-L: The only di�erence is that Lhyb-L maintains a variable “bad.” Since it
never actually reads from this variable, the change can have no e�ect.

I Lhyb-L and Lhyb-R di�er only in the highlighted line, which can only be reached when
bad = 1. Therefore, from the bad-event lemma:��� Pr[A � Lhyb-L ⇒ 1] − Pr[A � Lhyb-R ⇒ 1]

��� 6 Pr[A � Lhyb-L sets bad = 1].
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But A � Lhyb-L only sets bad = 1 if the calling program successfully predicts s in one
of the calls to predict. With q calls to predict, the total probability of this happening
is at most q/2λ , which is negligible when the calling program runs in polynomial time.
Hence Lhyb-L

∼∼∼ Lhyb-R.

I Lhyb-R ≡ Lright: Similar to above, note how the �rst 3 lines of predict in Lhyb-R don’t
actually do anything. The subroutine is going to return false no matter what. Both
libraries have identical behavior.

Since Lle� ≡ Lhyb-L

∼∼∼ Lhyb-R ≡ Lright, this proves that Lle�

∼∼∼ Lright.

4.4 Birthday Probabilities & Sampling With/out Replacement

In many cryptographic schemes, the users repeatedly choose random strings (e.g., each
time they encrypt a message), and security breaks down if the same string is ever chosen
twice. Hence, it is important that the probability of a repeated sample is negligible. In this
section we compute the probability of such events and express our �ndings in a modular
way, as a statement about the indistinguishability of two libraries.

Birthday Probabilities

Ifq people are in a room, what is the probability that two of them have the same birthday (if
we assume that each person’s birthday is uniformly chosen from among the possible days
in a year)? This question is known as the birthday problem, and it is famous because
the answer is highly unintuitive to most people.9

Let’s make the question more general. Imagine takingq independent, uniform samples
from a set of N items. What is the probability that the same value gets chosen more than
once? In other words, what is the probability that the following program outputs 1?

B(q,N )

for i := 1 to q:
si ← {1, . . . ,N }
for j := 1 to i − 1:

if si = sj then return 1
return 0

Let’s give a name to this probability:

BirthdayProb(q,N )
def
= Pr[B(q,N ) outputs 1].

It is possible to write an exact formula for this probability:

Lemma 4.9 BirthdayProb(q,N ) = 1 −
q−1∏
i=1

(
1 −

i

N

)
.

9It is sometimes called the “birthday paradox,” even though it is not really a paradox. The actual birthday
paradox is that the “birthday paradox” is not a paradox.
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Proof Let us instead compute the probability that B outputs 0, which will allow us to then solve
for the probability that it outputs 1. In order for B to output 0, it must avoid the early
termination conditions in each iteration of the main loop. Therefore:

Pr[B(q,N ) outputs 0] = Pr[B(q,N ) doesn’t terminate early in iteration i = 1]
· Pr[B(q,N ) doesn’t terminate early in iteration i = 2]
...

· Pr[B(q,N ) doesn’t terminate early in iteration i = q]

In iteration i of the main loop, there are i − 1 previously chosen values s1, . . . , si−1. The
program terminates early if any of these are chosen again as si , otherwise it continues to
the next iteration. Put di�erently, there are i − 1 (out of N ) ways to choose si that lead to
early termination — all other choices of si avoid early termination. Since theN possibilities
for si happen with equal probability:

Pr[B(q,N ) doesn’t terminate early in iteration i] = 1 −
i − 1
N
.

Putting everything together:

BirthdayProb(q,N ) = Pr[B(q,N ) outputs 1]
= 1 − Pr[B(q,N ) outputs 0]

= 1 −
(
1 −

1
N

) (
1 −

2
N

)
· · ·

(
1 −

q − 1
N

)
= 1 −

q−1∏
i=1

(
1 −

i

N

)
This completes the proof. �

Example This formula for BirthdayProb(q,N ) is not easy to understand at a glance. We can get a
better sense of its behavior as a function of q by plotting it. Below is a plot with N = 365,
corresponding to the classic birthday problem:

0 10 20 30 40 50 60 70
0

0.5

1

BirthdayProb(q, 365)

With only q = 23 people the probability of a shared birthday already exceeds 50%. The graph
could be extended to the right (all the way to q = 365), but even at q = 70 the probability
exceeds 99.9%.
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Asymptotic Bounds on the Birthday Probability

It will be helpful to have an asymptotic formula for how BirthdayProb(q,N ) grows as
a function of q and N . We are most interested in the case where q is relatively small
compared to N (e.g., when q is a polynomial function of λ but N is exponential).

Lemma 4.10

(Birthday Bound)

If q 6
√
2N , then

0.632
q(q − 1)
2N

6 BirthdayProb(q,N ) 6
q(q − 1)
2N

.

Since the upper and lower bounds di�er by only a constant factor, it makes sense to write
BirthdayProb(q,N ) = Θ(q2/N ).

Proof We split the proof into two parts.

I To prove the upper bound, we use the fact that when x and y are positive,

(1 − x)(1 − y) = 1 − (x + y) + xy
> 1 − (x + y).

More generally, when all terms xi are positive,
∏

i (1 − xi ) > 1 −
∑

i xi . Hence,

1 −
∏

i (1 − xi ) 6 1 − (1 −
∑

i xi ) =
∑

i xi .

Applying that fact,

BirthdayProb(q,N )
def
= 1 −

q−1∏
i=1

(
1 −

i

N

)
6

q−1∑
i=1

i

N
=

∑q−1
i=1 i

N
=
q(q − 1)
2N

.

I To prove the lower bound, we use the fact that when 0 6 x 6 1,

1 − x 6 e−x 6 1 − 0.632x .

This fact is illustrated below. The signi�cance of 0.632 is that 1 − 1
e = 0.63212 . . .

e−x
1 − 0.632x
1
−
x

We can use both of these upper and lower bounds on e−x to show the following:

q−1∏
i=1

(
1 −

i

N

)
6

q−1∏
i=1

e−
i
N = e−

∑q−1
i=1

i
N = e−

q(q−1)
2N 6 1 − 0.632

q(q − 1)
2N

.
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With the last inequality we used the fact that q 6
√
2N , and therefore q(q−1)

2N 6 1
(this is necessary to apply the inequality e−x 6 1 − 0.632x ). Hence:

BirthdayProb(q,N )
def
= 1 −

q−1∏
i=1

(
1 −

i

N

)
> 1 −

(
1 − 0.632

q(q − 1)
2N

)
= 0.632

q(q − 1)
2N

.

This completes the proof. �

Example Below is a plot of these bounds compared to the actual value of BirthdayProb(q,N ) (for N =
365):

0 10 20 30 40 50 60 70
0

0.5

1

BirthdayProb(q, 365)

0.632q(q−1)2·365

q(q−1)
2·365

As mentioned previously, BirthdayProb(q,N ) grows roughly like q2/N within the range of
values we care about (q small relative to N ).

The Birthday Problem in Terms of Indistinguishable Libraries

Below are two libraries which will also be useful for future topics.

Lsamp-L

samp():
r ← {0, 1}λ

return r

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Both libraries provide a samp subroutine that samples a random element of {0, 1}λ . The
implementation in Lsamp-L samples uniformly and independently from {0, 1}λ each time.
It samples with replacement, so it is possible (although maybe unlikely) for multiple
calls to samp to return the same value in Lsamp-L.

On the other hand,Lsamp-R samples λ-bit stringswithout replacement. It keeps track
of a set R, containing all the values it has previously sampled, and avoids choosing them
again (“{0, 1}λ \R” is the set of λ-bit strings excluding the ones in R). In this library, samp
will never output the same value twice.
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The “obvious” distinguishing strategy. A natural way (but maybe not the only way)
to distinguish these two libraries, therefore, would be to call samp many times. If you ever
see a repeated output, then you must certainly be linked to Lsamp-L. After some number
of calls to samp, if you still don’t see any repeated outputs, you might eventually stop and
guess that you are linked to Lsamp-R.

Let Aq denote this “obvious” calling program that makes q calls to samp and returns
1 if it sees a repeated value. Clearly, the program can never return 1 when it is linked to
Lsamp-R. On the other hand, when it is linked to Lsamp-L, it returns 1 with probability ex-
actly BirthdayProb(q, 2λ). Therefore, the advantage of Aq is exactly BirthdayProb(q, 2λ).

This program behaves di�erently in the presence of these two libraries, therefore they
are not interchangeable. But are the libraries indistinguishable? We have demonstrated a
calling program with advantage BirthdayProb(q, 2λ). We have not speci�ed q exactly, but
ifAq is meant to run in polynomial time (as a function of λ), then q must be a polynomial
function of λ. Then the advantage of Aq is BirthdayProb(q, 2λ) = Θ(q2/2λ), which is
negligible!

To show that the librares are indistinguishable, we have to show that all calling pro-
grams have negligible advantage. It is not enough just to show that this particular calling
program has negligible advantage. Perhaps surprisingly, the “obvious” calling program
that we considered is the best possible distinguisher!

Lemma 4.11

(Repl. Sampling)

Let Lsamp-L and Lsamp-R be de�ned as above. Then for all calling programs A that make q
queries to the samp subroutine, the advantage ofA in distinguishing the libraries is at most
BirthdayProb(q, 2λ).

In particular, whenA is polynomial-time (in λ), q grows as a polynomial in the security
parameter. Hence, A has negligible advantage. Since this is true for all polynomial-time A,
we have Lsamp-L

∼∼∼ Lsamp-R.

Proof Consider the following hybrid libraries:

Lhyb-L

R := ∅
bad := 0

samp():
r ← {0, 1}λ

if r ∈ R then:
bad := 1

R := R ∪ {r }
return r

Lhyb-R

R := ∅
bad := 0

samp():
r ← {0, 1}λ

if r ∈ R then:
bad := 1
r ← {0, 1}λ \ R

R := R ∪ {r }
return r

First, let us prove some simple observations about these libraries:

Lhyb-L ≡ Lsamp-L: Note that Lhyb-L simply samples uniformly from {0, 1}λ . The extra R
and bad variables in Lhyb-L don’t actually have an e�ect on its external
behavior (they are used only for convenience later in the proof).
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Lhyb-R ≡ Lsamp-R: Whereas Lsamp-R avoids repeats by simply sampling from {0, 1}λ \ R,
this library Lhyb-R samples r uniformly from {0, 1}λ and retries if the
result happens to be in R. This method is called rejection sampling, and
it has the same e�ect10 as sampling r directly from {0, 1}λ \ R.

Conveniently, Lhyb-L and Lhyb-R di�er only in code that is reachable when bad = 1 (high-
lighted). So, using Lemma 4.8, we can bound the advantage of the calling program:�� Pr[A � Lsamp-L ⇒ 1] − Pr[A � Lsamp-R ⇒ 1]

��
=

�� Pr[A � Lhyb-L ⇒ 1] − Pr[A � Lhyb-R ⇒ 1]
��

6 Pr[A � Lhyb-L sets bad := 1].

Finally, we can observe thatA�Lhyb-L sets bad := 1 only in the event that it sees a repeated
sample from {0, 1}λ . This happens with probability BirthdayProb(q, 2λ). �

Discussion

I Stating the birthday problem in terms of indistinguishable libraries makes it a useful
tool in future security proofs. For example, when proving the security of a construc-
tion we can replace a uniform sampling step with a sampling-without-replacement
step. This change has only a negligible e�ect, but now the rest of the proof can take
advantage of the fact that samples are never repeated.

Another way to say this is that, when you are thinking about a cryptographic con-
struction, it is “safe to assume” that randomly sampled long strings do not repeat,
and behave accordingly.

I However, if a security proof does use the indistinguishability of the birthday li-
braries, it means that the scheme can likely be broken when a user happens to repeat
a uniformly sampled value. Since this becomes inevitable as the number of samples
approaches

√
2λ+1 ∼ 2λ/2, it means the scheme only o�ers λ/2 bits of security. When

a scheme has this property, we say that it has birthday bound security. It is im-
portant to understand when a scheme has this property, since it informs the size of
keys that should be chosen in practice.

A Generalization

A calling program can distinguish between the previous libraries if samp ever returns the
same value twice. In any given call to samp, the variableR denotes the set of “problematic”
values that cause the libraries to be distinguished. At any point, R has only polynomially
many values, so the probability of chosing such a problematic one is negligible.

Suppose we considered a di�erent set of values to be problematic. As long as there are
only polynomially many problematic values in each call to samp, the reasoning behind the
proof wouldn’t change much. This idea leads to the following generalization, in which the
calling program explicitly writes down all of the problematic values:

10The two approaches for sampling from {0, 1}λ \ R may have di�erent running times, but our model
considers only the input-output behavior of the library.

81



Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Lemma 4.12 The following two libraries are indistinguishable, provided that the argument R to samp is
passed as an explicit list of items.

Lsamp-L

samp(R ⊆ {0, 1}λ):
r ← {0, 1}λ

return r

Lsamp-R

samp(R ⊆ {0, 1}λ):
r ← {0, 1}λ \ R
return r

Suppose the calling program makes q calls to samp, and in the ith call it uses an argu-
ment R with ni items. Then the advantage of the calling program is at most:

1 −
q∏
i=1

(
1 −

ni

2λ
)
.

We can bound this advantage as before. If
∑q

i=1 ni 6 2λ , then the advantage is between
0.632

(∑q
i=1 ni

)
/2λ and

(∑q
i=1 ni

)
/2λ . When the calling program runs in polynomial time

and must pass R as an explicit list (i.e., take the time to “write down” the elements of R),∑q
i=1 ni is a polynomial in the security parameter and the calling program’s advantage is

negligible.
The birthday scenario corresponds to the special case where ni = i − 1 (in the ith call,

R consists of the i−1 results from previous calls to samp). In that case,
∑q

i=1 ni = q(q−1)/2
and the probabilities collapse to the familiar birthday probabilities.

Exercises

4.1. In Section 4.1 we estimated the monetary cost of large computations, using pricing infor-
mation from Amazon EC2 cloud computing service. This re�ects the cost of doing a huge
computation using a general-purpose CPU. For long-lived computations, the dominating
cost is not the one-time cost of the hardware, but rather the cost of electricity powering
the hardware. Because of that, it can be much cheaper to manufacture special-purpose
hardware. Depending on the nature of the computation, special-purpose hardware can be
signi�cantly more energy-e�cient.

This is the situation with the Bitcoin cryptocurrency. Mining Bitcoin requires evaluat-
ing the SHA-256 cryptographic hash function as many times as possible, as fast as possi-
ble. When mining Bitcoin today, the only economically rational choice is to use special-
purpose hardware that does nothing except evaluate SHA-256, but is millions (maybe bil-
lions) of times more energy e�cient than a general-purpose CPU evaluating SHA-256.

(a) The relevant specs for Bitcoin mining hardware are wattage and giga-hashes (or tera-
hashes) per second, which can be converted into raw energy required per hash. Search
online and �nd the most energy e�cient mining hardware you can (e.g., least joules
per hash).

(b) Find the cheapest real-world electricity rates you can, anywhere in the world. Use
these to estimate the monetary cost of computing 240, 250, . . . , 2120 SHA-256 hashes.
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(c) Money is not the only way to measure the energy cost of a huge computation. Search
online to �nd out how much carbon dioxide (CO2) is placed into the atmosphere per
unit of electrical energy produced, under a typical distribution of power production
methods. Estimate how many tons of CO2 are produced as a side-e�ect of computing
240, 250, . . . , 2120 SHA-256 hashes.

? (d) Estimate the corresponding CO2 concentration (parts per million) in the atmosphere
as a result of computing 240, 250, . . . , 2120 SHA-256 hashes. If it is possible without
a PhD in climate science, try to estimate the increase in average global temperature
caused by these computations.

4.2. Which of the following are negligible functions in λ? Justify your answers.

1
2λ/2

1
2log(λ2)

1
λlog(λ)

1
λ2

1
2(log λ)2

1
(log λ)2

1
λ1/λ

1
√
λ

1
2
√
λ

4.3. Suppose f and д are negligible.

(a) Show that f + д is negligible.

(b) Show that f · д is negligible.

(c) Give an example f and д which are both negligible, but where f (λ)/д(λ) is not negli-
gible.

4.4. Show that when f is negligible, then for every polynomial p, the function p(λ)f (λ) not
only approaches 0, but it is also negligible itself.

Hint: Usethecontrapositive.Supposethatp(λ)f(λ)isnon-negligible,wherepisapolynomial.Conclude
thatfmustalsobenon-negligible.

4.5. Prove that the≈ relation is transitive. Let f ,д,h : N→ R be functions. Using the de�nition
of the ≈ relation, prove that if f ≈ д and д ≈ h then f ≈ h. You may �nd it useful to invoke
the triangle inequality: |a − c | 6 |a − b | + |b − c |.

4.6. Prove Lemma 4.6.

4.7. Prove Lemma 4.7.

? 4.8. A deterministic program is one that uses no random choices. Suppose L1 and L2 are two
deterministic libraries with a common interface. Show that either L1 ≡ L2, or else L1 &
L2 can be distinguished with advantage 1.

4.9. Algorithm B in Section 4.4 has worst-case running time O(q2). Can you suggest a way to
make it run in O(q logq) time? What about O(q) time?

4.10. Assume that the last 4 digits of student ID numbers are assigned uniformly at this uni-
versity. In a class of 46 students, what is the exact probability that two students have ID
numbers with the same last 4 digits?

Compare this exact answer to the upper and lower bounds given by Lemma 4.10.

83



Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

4.11. Write a program that experimentally estimates the BirthdayProb(q,N ) probabilities.

Given q and N , generate q uniformly chosen samples from ZN , with replacement, and
check whether any element was chosen more than once. Repeat this entire process t times
to estimate the true probability of BirthdayProb(q,N ).

Generate a plot that compares your experimental �ndings to the theoretical upper/lower
bounds of 0.632q(q−1)2λ+1 and q(q−1)

2λ+1 .

4.12. Suppose you want to enforce password rules so that at least 2128 passwords satisfy the
rules. How many characters long must the passwords be, in each of these cases?

(a) Passwords consist of lowercase a through z only.

(b) Passwords consist of lowercase and uppercase letters a–z and A–Z.

(c) Passwords consist of lower/uppercase letters and digits 0–9.

(d) Passwords consist of lower/uppercase letters, digits, and any symbol characters that
appear on a standard US keyboard (including the space character).
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