
7 Security Against Chosen Plaintext

A�acks

Our previous security de�nitions for encryption capture the case where a key is used to
encrypt only one plaintext. Clearly it would be more useful to have an encryption scheme
that allows many plaintexts to be encrypted under the same key.

Fortunately we have arranged things so that we get the “correct” security de�nition
when we modify the earlier de�nition in a natural way. We simply let the libraries choose
a secret key once and for all, which is used to encrypt all plaintexts. More formally:

Definition 7.1

(CPA security)

Let Σ be an encryption scheme. We say that Σ has security against chosen-plaintext
a�acks (CPA security) if LΣ

cpa-L

∼∼∼ L
Σ
cpa-R

, where:

LΣ
cpa-L

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
c := Σ.Enc(k, mL)

return c

LΣ
cpa-R

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
c := Σ.Enc(k, mR)

return c

Notice how the key k is chosen at initialization time and is static for all calls to Enc.
CPA security is often called “IND-CPA” security, meaning “indistinguishability of cipher-
texts under chosen-plaintext attack.”

7.1 Limits of Deterministic Encryption

We have already seen block ciphers / PRPs, which seem to satisfy everything needed for
a secure encryption scheme. For a block cipher, F corresponds to encryption, F−1 corre-
sponds to decryption, and all outputs of F look pseudorandom. What more could you ask
for in a good encryption scheme?

Example We will see that a block cipher, when used “as-is,” is not a CPA-secure encryption scheme. Let
F denote the block cipher and suppose its block length is blen.

Consider the following adversary A, that tries to distinguish the Lcpa-? libraries:

A

c1 := eavesdrop(0blen, 0blen)

c2 := eavesdrop(0blen, 1blen)

return c1
?
= c2

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

A

c1 := eavesdrop(0blen , 0blen)

c2 := eavesdrop(0blen , 1blen)

return c1
?
= c2

�

LΣ
cpa-L

k ← {0, 1}λ

eavesdrop(mL,mR):
c := F (k, mL)

return c

When A is linked to Lcpa-L, the
eavesdrop algorithm will en-
crypt its �rst argument. So, c1
and c2 will both be computed as
F (k, 0blen). Since F is a determin-
istic function, this results in iden-
tical outputs from eavesdrop. In
other words c1 = c2, and A �
Lcpa-L always outputs 1.

A

c1 := eavesdrop(0blen, 0blen)

c2 := eavesdrop(0blen, 1blen)

return c1
?
= c2

�

LΣ
cpa-R

k ← {0, 1}λ

eavesdrop(mL,mR):
c := F (k, mR)

return c

When A is linked to Lcpa-R, the
eavesdrop algorithm will en-
crypt its second argument. So,
c1 and c2 are computed as c1 =
F (k, 0blen) and c2 = F (k, 1blen).
Since F is a permutation, c1 , c2,
so A �Lcpa-R never outputs 1.

This adversary has advantage 1 in distinguishing the libraries, so the bare block cipher F
is not a CPA-secure encryption scheme.

Impossibility of Deterministic Encryption

The reason a bare block cipher does not provide CPA security is that it is deterministic.
Calling Enc(k,m) twice — with the same key and same plaintext — leads to the same ci-
phertext. Even one-time pad is deterministic.1 One of the �rst and most important aspects
of CPA security is that it is incompatible with deterministic encryption. Deterministic
encryption can never be CPA-secure! In other words, we can attack the CPA-security
of any scheme Σ, knowing only that it has deterministic encryption. The attack is a simple
generalization of our attack against a bare PRP:

A

arbitrarily choose distinct plaintexts x ,y ∈ M
c1 := eavesdrop(x ,x)
c2 := eavesdrop(x ,y)
return c1

?
= c2

A good way to think about what goes wrong with deterministic encryption is that it
leaks whether two ciphertexts encode the same plaintext, and this is not allowed
by CPA security. Think of sealed envelopes as an analogy for encryption. I shouldn’t be
able to tell whether two sealed envelopes contain the same text! We are only now seeing
this issue because this is the �rst time our security de�nition allows an adversary to see
multiple ciphertexts encrypted under the same key.

1Remember, we can always consider what will happen when running one-time pad encryption twice
with the same key + plaintext. The one-time secrecy de�nition doesn’t give us any security guarantees about
using one-time pad in this way, but we can still consider it as a thought experiment.

131

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Avoiding Deterministic Encryption

Is CPA security even possible? How exactly can we make a non-deterministic encryption
scheme? This sounds challenging! We must design an Enc algorithm such that calling it
twice with the same plaintext and key results in di�erent ciphertexts (otherwise the attack
A above violates CPA security). What’s more, it must be possible to decrypt all of those
di�erent encryptions of the same plaintext to the correct value!

There are 3 general ways to design an encryption scheme that is not deterministic:

I Encryption/decryption can be stateful, meaning that every call to Enc or Dec will
actually modify the value ofk . The symmetric ratchet construction described in Sec-
tion 5.5 could be thought of as such a stateful construction. The key is updated via
the ratchet mechanism for every encryption. A signi�cant drawback with stateful
encryption is that synchronization between sender and receiver is fragile and can
be broken if a ciphertext is lost in transit.

I Encryption can be randomized. Each time a plaintext is encrypted, the Enc algo-
rithm chooses fresh, independent randomness speci�c to that encryption. The main
challenge in designing a randomized encryption method is to incorporate random-
ness into each ciphertext in such a way that decryption is still possible. Although
this sounds quite challenging, we have already seen such a method, and we will
prove its CPA security in the next sections. In this book we will focus almost en-
tirely on randomized encryption.

I Encryption can be nonce-based. A “nonce” stands for “number used only once,”
and it refers to an extra argument that is passed to the Enc and Dec algorithms. A
nonce does not need to be chosen randomly; it does not need to be secret; it only
needs to be distinct among all calls made to Enc. By guaranteeing that some input
to Enc will be di�erent every time (even when the key and plaintext are repeated),
the Enc algorithm can be deterministic and still provide CPA security.
Nonce-based encryption requires a change to the interface of encryption, and
therefore a change to the correctness & security de�nitions as well. The encryp-
tion/decryption algorithms syntax is updated to Enc(k,v,m) and Dec(k,v, c), where
v is a nonce. The correctness property is that Dec(k,v, Enc(k,v,m)) = m for all
k,v,m, so both encryption & decryption algorithms should use the same nonce.
The security de�nition allows the adversary to choose the nonce, but gives an error
if the adversary tries to encrypt multiple ciphertexts with the same nonce. In this
way, the de�nition enforces that the nonces are distinct.

k ← Σ.KeyGen

V := ∅

eavesdrop(v ,mL,mR ∈ Σ.M):

if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k, v ,mL)

return c

∼∼∼

k ← Σ.KeyGen

V := ∅

eavesdrop(v ,mL,mR ∈ Σ.M):

if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k, v ,mR)

return c

132

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Note that the calling program provides a single value v (not a vL and vR). Both
libraries use the nonce v that is given, and this implies that the encryption scheme
does not need to hide v . If something is the same between both libraries, then it is
not necessary to hide it in order to make the libraries indistinguishable.

If an encryption scheme does not fall into one of these three categories, it cannot
satisfy our de�nition of CPA-security. You can and should use deterministic encryption as
a sanity check against any proposed encryption algorithm.

7.2 Pseudorandom Ciphertexts

When we introduced one-time security of encryption (in Section 2.2), we had two variants
of the de�nition. The more general variant said, roughly, that encryptions of mL should
look like encryptions of mR . The more speci�c variant said that encryptions of every m
should look uniform.

We can do something similar for CPA security, by de�ning a security de�nition that
says “encryptions of m look uniform.” Note that it is not su�cient to use the same se-
curity libraries from the one-time security de�nition. It is important for the library to
allow multiple encryptions under the same key. Just because a single encryption is pseu-
dorandom, it doesn’t mean that multiple encryptions appear jointly pseudorandom. In
particular, they may not look independent (this was an issue we saw when discussing the
di�culty of constructing a PRF from a PRG).

Definition 7.2

(CPA$ security)

Let Σ be an encryption scheme. We say that Σ has pseudorandom ciphertexts in the
presence of chosen-plaintext a�acks (CPA$ security) if LΣ

cpa$-real

∼∼∼ L
Σ
cpa$-rand

, where:

LΣ
cpa$-real

k ← Σ.KeyGen

ctxt(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

LΣ
cpa$-rand

ctxt(m ∈ Σ.M):
c ← Σ.C
return c

This de�nition is also called “IND$-CPA”, meaning “indistinguishable from random
under chosen plaintext attacks.” This de�nition will be useful to use since:

I It is easier to prove CPA$ security than to prove CPA security. Proofs for CPA secu-
rity tend to be about twice as long and twice as repetitive, since they involve getting
to a “half-way hybrid” and then performing the same sequence of hybrids steps in
reverse. Taking the proof only to the same half-way point is generally enough to
prove CPA$ security

I CPA$ security implies CPA security. We show this below, but the main idea is the
same as in the case of one-time security. If encryptions of all plaintexts look uniform,
then encryptions ofmL look like encryptions ofmR .

I Most of the schemes we will consider achieve CPA$ anyway.

133

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Still, most of our high-level discussion of security properties will be based on CPA security.
It is the “minimal” (i.e., least restrictive) de�nition that appears to capture our security
intuitions.

Claim 7.3 If an encryption scheme has CPA$ security, then it also has CPA security.

Proof We want to prove that LΣ
cpa-L

∼∼∼ L
Σ
cpa-R

, using the assumption that LΣ
cpa$-real

∼∼∼ L
Σ
cpa$-rand

.
The sequence of hybrids follows:

LΣ
cpa-L

:

LΣ
cpa-L

k ← Σ.KeyGen

eavesdrop(mL,mR):
c := Σ.Enc(k,mL)

return c

The starting point is LΣ
cpa-L

, as expected.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
cpa$-real

k ← Σ.KeyGen

ctxt(m):
c := Σ.Enc(k,m)
return c

It may look strange, but we have further
factored out the call to Enc into a subrou-
tine. It looks like everything from Lcpa-L

has been factored out, but actually the
original library still “makes the choice” of
which ofmL,mR to encrypt.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
cpa$-rand

ctxt(m):
c ← Σ.C
return c

We have replaced LΣ
cpa$-real

with
LΣ

cpa$-rand
. By our assumption, the

change is indistinguishable.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
cpa$-rand

ctxt(m):
c ← Σ.C
return c

We have changed the argument being
passed to ctxt. This has no e�ect on the
library’s behavior since ctxt completely
ignores its argument in these hybrids.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
cpa$-real

k ← Σ.KeyGen

ctxt(m):
c := Σ.Enc(k,m)
return c

The mirror image of a previous step; we
replace Lcpa$-rand with Lcpa$-real.

134

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

LΣ
cpa-R

:

LΣ
cpa-R

k ← Σ.KeyGen

eavesdrop(mL,mR):
c := Σ.Enc(k,mR)

return c

The Lcpa$-real library has been inlined,
and the result is LΣ

cpa-R
.

The sequence of hybrids shows that LΣ
cpa-L

∼∼∼ L
Σ
cpa-R

, as desired. �

7.3 CPA-Secure Encryption Based On PRFs

CPA security presents a signi�cant challenge; its goals seem di�cult to reconcile. On the
one hand, we need an encryption method that is randomized, so that each plaintext m
is mapped to a large number of potential ciphertexts. On the other hand, the decryption
method must be able to recognize all of these various ciphertexts as being encryptions of
m.

However, we have already seen a way to do this! In Chapter 6 we motivated the
concept of a PRF with the following encryption technique. If Alice and Bob share a huge
tableT initialized with uniform data, then Alice can encrypt a plaintextm to Bob by saying
something like “this is encrypted with one-time pad, using key #674696273” and sending
T [674696273]⊕m. Seeing the number 674696273 doesn’t help the eavesdropper know what
T [674696273] is. A PRF allows Alice & Bob to do the same encryption while sharing only
a short key k . Instead of a the huge table T , they can instead use a PRF F (k, ·) to derive
a common pseudorandom value. Knowing a value r doesn’t help the adversary predict
F (k, r), when k is secret.

So, translated into more precise PRF notation, an encryption of m will look like
(r , F (k, r) ⊕m). Since Bob also has k , he can decrypt any ciphertext of this form by com-
puting F (k, r) and xor’ing the second ciphertext component to recoverm.

It remains to decide how exactly Alice will choose r values. We argued, informally, that
as long as these r values don’t repeat, security is preserved. This is indeed true, and the
distinctness of the r values is critical. Recall that there are 3 ways to avoid deterministic
encryption, and all 3 of them would work here:

I In a stateful encryption, r could be used as a counter. Use r = i to encrypt/decrypt
the ith ciphertext.

I In a randomized encryption, choose r uniformly at random for each encryption. If
the r values are long enough strings, then repeating an r value should be negligibly
likely.

I In a nonce-based encryption, we can simply let r be the nonce. In the nonce-based
setting, it is guaranteed that these values won’t repeat.

In this section we will show the security proof for the case of randomized encryption,
since it is the most traditional setting and also somewhat more robust than the others.

135

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

The exercises explore how the nonce-based approach is more fragile when this scheme is
extended in natural ways.

Construction 7.4 Let F be a secure PRF with in = λ. De�ne the following encryption scheme based on F :

K = {0, 1}λ

M = {0, 1}out

C = {0, 1}λ × {0, 1}out

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
r ← {0, 1}λ

x := F (k, r) ⊕m
return (r ,x)

Dec(k, (r ,x)):
m := F (k, r) ⊕ x
returnm

It is easy to check that the scheme satis�es the correctness property.

Claim 7.5 Construction 7.4 has CPA$ security (and therefore CPA security) if F is a secure PRF.

The proof has more steps than other proofs we have seen before, and some steps are
subtle. So let us use a Socratic dialogue to illustrate the strategy behind the proof:

Salviati: The ciphertexts of Construction 7.4 are indistinguishable from uniform random-
ness.

Simplicio: Salviati, you speak with such con�dence! Do tell me why you say that these
ciphertexts appear pseudorandom.

Salviati: Simple! The ciphertexts have the form (r , F (k, r) ⊕m). By its very de�nition, r
is chosen uniformly, while F (k, r) ⊕m is like a one-time pad ciphertext which is
also uniformly distributed.

Simplicio: Your statement about r is self-evident but F (k, r) ⊕m confuses me. This does
not look like the one-time pad that we have discussed. For one thing, the same
k is used “every time,” not “one-time.”

Salviati: I did say it was merely “like” one-time pad. The one-time pad “key” is not k
but F (k, r). And since F is a pseudorandom function, all its outputs will appear
independently uniform (not to mention uncorrelated with their respective r), even
when the same seed is used every time. Is this not what we require from a one-time
pad key?

Simplicio: I see, but surely the outputs of F appear independent only when its inputs are
distinct? I know that F is deterministic, and this may lead to the same “one-
time pad key” being used on di�erent occasions.

Salviati: Your skepticism serves you well in this endeavor, Simplicio. Indeed, the heart of
your concern is that Alice may choose r such that it repeats. I say that this is
negligibly likely, so that we can safely ignore such a bothersome event.

Simplicio: Bothersome indeed, but why do you say that r is unlikely to repeat?

136

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Salviati: Oh Simplicio, now you are becoming bothersome! This value r is λ bits long and
chosen uniformly at random each time. Do you not recall our agonizingly long
discussion about the birthday paradox?

Simplicio: Oh yes, now I remember it well. Now I believe I understand all of your reason-
ing: Across all ciphertexts that are generated, r is unlikely to repeat because
of the birthday paradox. Now, provided that r never repeats, Alice invokes the
PRF on distinct inputs. A PRF invoked on distinct inputs provides outputs that
are uniformly random for all intents and purposes. Hence, using these outputs
as one-time pads completely hides the plaintext. Is that right, Salviati?

Salviati: Excellent! Now we may return to discussing the motion of the Sun and Earth . . .

Look for Simplicio’s �nal summary to be re�ected in the sequence of hybrids used in
the formal proof:

Proof We prove that LΣ
cpa$-real

∼∼∼ L
Σ
cpa$-rand

using the hybrid technique:

LΣ
cpa$-real

:

LΣ
cpa$-real

k ← {0, 1}λ

ctxt(m):
r ← {0, 1}λ

x := F (k, r) ⊕m

return (r ,x)

The starting point is LΣ
cpa$-real

. The details
of Σ have been �lled in and highlighted.

ctxt(m):
r ← {0, 1}λ

z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-real

k ← {0, 1}λ

lookup(r):
return F (k, r)

The statements pertaining to the PRF have
been factored out in terms of the LF

prf-real

library.

ctxt(m):
r ← {0, 1}λ

z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-rand

T := empty

lookup(r):
if T [r] unde�ned:
T [r] ← {0, 1}out

return T [r]

We have replaced LF
prf-real

with LF
prf-rand

.
From the PRF security of F , these two hy-
brids are indistinguishable.

At this point in the proof, it is easy to imagine that we are done. Ciphertexts have the
form (r ,x), where r is chosen uniformly and x is the result of encrypting the plaintext with
what appears to be a one-time pad. Looking more carefully, however, the “one-time pad

137

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

key” is T [r] — a value that could potentially be used more than once if r is ever repeated!
As Simplicio rightly pointed out, a PRF gives independently random(-looking) outputs

when called on distinct inputs. But in our current hybrid there is no guarantee that PRF
inputs are distinct! Our proof must explicitly contain reasoning about why PRF inputs are
unlikely to be repeated. We do so by appealing to the sampling-with-replacement lemma
of Lemma 4.11.

We �rst factor out the sampling of r values into a subroutine. The subroutine corre-
sponds to the Lsamp-L library of Lemma 4.11:

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-rand

T := empty

lookup(r):
if T [r] unde�ned:
T [r] ← {0, 1}out

return T [r]

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

Next, Lsamp-L is replaced by Lsamp-R. By Lemma 4.11, the di�erence is indistinguishable:

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-rand

T := empty

lookup(r):
if T [r] unde�ned:
T [r] ← {0, 1}out

return T [r]

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Inspecting the previous hybrid, we can reason that the arguments to lookup are guaran-
teed to never repeat. Therefore the Lprf-rand library can be greatly simpli�ed. In particular,
the if-condition inLprf-rand is always true. Simplifying has no e�ect on the library’s output
behavior:

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

lookup(r):
t ← {0, 1}out

return t

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Now we are indeed using unique one-time pads to mask the plaintext. We are in much
better shape than before. Recall that our goal is to arrive at a hybrid in which the outputs
of ctxt are chosen uniformly. These outputs include the value r , but now r is no longer
being chosen uniformly! We must revert r back to being sampled uniformly, and then we
are nearly to the �nish line.

138

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

lookup(r):
t ← {0, 1}out

return t

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

As promised, Lsamp-R has been
replaced by Lsamp-L. The
di�erence is indistinguishable
due to Lemma 4.11.

ctxt(m):
r ← {0, 1}λ

z ← {0, 1}out

x := z ⊕m
return (r ,x)

All of the subroutine calls have
been inlined; no e�ect on the
library’s output behavior.

LΣ
cpa$-rand

:

LΣ
cpa$-rand

ctxt(m):
r ← {0, 1}λ

x ← {0, 1}out

return (r ,x)

We have applied the one-time pad rule with respect to variables z
and x , but omitted the very familiar steps (factor out, replace library,
inline) that we have seen several times before. The resulting library is
precisely LΣ

cpa$-rand
since it samples uniformly from Σ.C = {0, 1}λ ×

{0, 1}out .

The sequence of hybrids shows that LΣ
cpa$-real

∼∼∼ L
Σ
cpa$-rand

, so Σ has pseudorandom
ciphertexts. �

Exercises

7.1. Let Σ be an encryption scheme, and suppose there is a program A that recovers the key
from a chosen plaintext attack. More precisely, Pr[A � L outputs k] is non-negligible,
where L is de�ned as:

L

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

Prove that if such anA exists, then Σ does not have CPA security. UseA as a subroutine
in a distinguisher that violates the CPA security de�nition.

In other words, CPA security implies that it should be hard to determine the key from
seeing encryptions of chosen plaintexts.

7.2. Let Σ be an encryption scheme with CPA$ security. Let Σ′ be the encryption scheme
de�ned by:

Σ′.Enc(k,m) = 00‖Σ.Enc(k,m)

139

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

The decryption algorithm in Σ′ simply throws away the �rst two bits of the ciphertext and
then calls Σ.Dec.

(a) Does Σ′ have CPA$ security? Prove or disprove (if disproving, show a distinguisher
and calculate its advantage).

(b) Does Σ′ have CPA security? Prove or disprove (if disproving, show a distinguisher and
calculate its advantage).

7.3. Suppose a user is using Construction 7.4 and an adversary observes two ciphertexts that
have the same r value.

(a) What exactly does the adversary learn about the plaintexts in this case?

(b) How do you reconcile this with the fact that in the proof of Claim 7.5 there is a hybrid
where r values are never repeated?

7.4. Construction 7.4 is a randomized encryption scheme, but we could also consider de�ning
it as a nonce-based scheme, interpreting r as the nonce: Enc(k, r ,m) = (r , F (k, r) ⊕m).
Formally prove that it is secure as a deterministic, nonce-based scheme. In other words,
show that the following two libraries are indistinguishable, where Σ refers to Construc-
tion 7.4.

k ← Σ.KeyGen

V := ∅

eavesdrop(v,mL,mR ∈ Σ.M):
if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k,v,mL)

return c

k ← Σ.KeyGen

V := ∅

eavesdrop(v,mL,mR ∈ Σ.M):
if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k,v,mR)

return c

7.5. Let F be a secure PRP with blocklength blen = λ. Consider the following randomized
encryption scheme:

K = {0, 1}λ

M = {0, 1}λ

C = ({0, 1}λ)2

KeyGen :
k ← {0, 1}λ

return k

Enc(k,m) :
v ← {0, 1}λ

x := F (k,v ⊕m)
return (v,x)

(a) Give the decryption algorithm for this scheme.

(b) Prove that the scheme has CPA$ security.

(c) Suppose that we interpret this scheme as a nonce-based scheme, wherev is the nonce.
Show that the scheme does not have nonce-based CPA security. The libraries for this
de�nition are given in the previous problem.
Note: Even in the standard CPA libraries, v is given to the adversary and it is unlikely
to repeat. However, in the nonce-based libraries the adversary can choose v , and this
is what leads to problems.

140

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

7.6. Let F be a secure PRP with blocklength blen = λ. Show the the following scheme has
pseudorandom ciphertexts:

K = {0, 1}λ

M = {0, 1}λ

C = ({0, 1}λ)2

KeyGen :
k ← {0, 1}λ

return k

Enc(k,m) :
s ← {0, 1}λ

z := F (k, s ⊕m) ⊕m
return (s ⊕m, z)

Dec(k, (r , z)) :
return F (k, r) ⊕ z

Hint: RewriteEnctoincludeanewvariabler:=s⊕mandwritetheoutputintermsofrinsteadofs.
Youmightthenrecognizeafamiliarface.

7.7. Let F be a secure PRP with blocklength blen = λ. Below are several encryption schemes,
each with K =M = {0, 1}λ and C = ({0, 1}λ)2. For each one:

I Give the corresponding Dec algorithm.

I State whether the scheme has CPA security. (Assume KeyGen samples the key uni-
formly from {0, 1}λ .) If so, then give a security proof. If not, then describe a success-
ful adversary and compute its distinguishing bias.

(a)

Enc(k,m) :
r ← {0, 1}λ

z := F (k,m) ⊕ r
return (r , z)

(b)

Enc(k,m) :
r ← {0, 1}λ

s := r ⊕m
x := F (k, r)
return (s,x)

(c)

Enc(k,m) :
r ← {0, 1}λ

x := F (k, r)
y := r ⊕m
return (x ,y)

(d)

Enc(k,m) :
r ← {0, 1}λ

x := F (k, r)
y := F (k, r) ⊕m
return (x ,y)

(e)

Enc(k,m) :
r ← {0, 1}λ

x := F (k, r)
y := r ⊕ F (k,m)
return (x ,y)

(f)

Enc(k,m) :
s1 ← {0, 1}

λ

s2 := s1 ⊕m
x := F (k, s1)
y := F (k, s2)
return (x ,y)

? (g)

Enc(k,m) :
r ← {0, 1}λ

x := F (k,m ⊕ r) ⊕ r
return (r ,x)

Hint: Inallsecurityproofs,youcanusethePRPswitchinglemma(Lemma6.7)tostartwiththeassump-
tionthatFisaPRF.

141

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

7.8. Suppose F is a secure PRP with blocklength n + λ. Below is the encryption algorithm for
a scheme that supports plaintext spaceM = {0, 1}n :

Enc(k,m):
r ← {0, 1}λ

return F (k,m‖r)

(a) Describe the corresponding decryption algorithm.

(b) Prove that the scheme satis�es CPA$ security.

? 7.9. Suppose F is a secure PRP with blocklength λ. Give the decryption algorithm for the
following scheme and prove that it does not have CPA security:

K = {0, 1}λ

M = {0, 1}2λ

C = ({0, 1}λ)3

KeyGen :
k ← {0, 1}λ

return k

Enc(k,m1‖m2) :
r ← {0, 1}λ

s := F (k, r ⊕m1)

t := F
(
k, r ⊕m1 ⊕ F (k,m1) ⊕m2

)
return (r , s, t)

? 7.10. Suppose F is a secure PRP with blocklength λ. Give the decryption algorithm for the
following scheme and prove that it satis�es CPA$ security:

K = ({0, 1}λ)2

M = {0, 1}λ

C = ({0, 1}λ)2

KeyGen :
k ← {0, 1}λ

r ← {0, 1}λ

return (k, r)

Enc((k, r),m) :
s ← {0, 1}λ

x := F (k, s)
y := F (k, s ⊕m ⊕ r)
return (x ,y)

Hint: Youmay�nditusefultodividetheEncalgorithmintotwocasesbyintroducingan“ifm=r”
statement.

Note: If r = 0λ then the scheme reduces to Exercise 7.7 (f). So it is important that r is secret
and random.

7.11. Let Σ be an encryption scheme with plaintext space M = {0, 1}n and ciphertext space
C = {0, 1}n . Prove that Σ cannot have CPA security.

Conclude that direct application of a PRP to the plaintext is not a good choice for an
encryption scheme.

? 7.12. In all of the CPA-secure encryption schemes that we’ll ever see, ciphertexts are at least
λ bits longer than plaintexts. This problem shows that such ciphertext expansion is
essentially unavoidable for CPA security.

Let Σ be an encryption scheme with plaintext space M = {0, 1}n and ciphertext space
C = {0, 1}n+` . Show that there exists a distinguisher that distinguishes the two CPA
libraries with advantage Ω(1/2`).

Hint:

Asawarmup,considerthecasewhereeachplaintexthasexactly2
`

possibleciphertexts.However,
thisneednotbetrueingeneral.Forthegeneralcase,choosearandomplaintextmandarguethat
with“goodprobability”(thatyoushouldpreciselyquantify)mhasatmost2

`+1possibleciphertexts.

142

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

7.13. Show that an encryption scheme Σ has CPA security if and only if the following two
libraries are indistinguishable:

LΣ
le�

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
return Σ.Enc(k,m)

LΣ
right

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
m′← Σ.M
return Σ.Enc(k,m′)

In plain language: if these libraries are indistinguishable, then encryptions of chosen plain-
texts are indistinguishable from encryptions of random plaintexts. You must prove both
directions!

7.14. Let Σ1 and Σ2 be encryption schemes with Σ1.M = Σ2.M = {0, 1}
n .

Consider the following approach for encrypting plaintext m ∈ {0, 1}n : First, secret-share
m using any 2-out-of-2 secret-sharing scheme. Then encrypt one share under Σ1 and the
other share under Σ2. Release both ciphertexts.

(a) Formally describe the algorithms of this encryption method.

(b) Prove that the scheme has CPA security if at least one of {Σ1, Σ2} has CPA security.
In other words, it is not necessary that both Σ1 and Σ2 are secure. This involves proving
two cases (assuming Σ1 is secure, and assuming Σ2 is secure).

143

