9.1

Chosen Ciphertext Attacks

In this chapter we discuss the limitations of the CPA security definition. In short, the CPA
security definition considers only the information leaked to the adversary by honestly-
generated ciphertexts. It does not, however, consider what happens when an adversary
is allowed to inject its own maliciously crafted ciphertexts into an honest system. If that
happens, then even a CPA-secure encryption scheme can fail in spectacular ways. We
begin by seeing such an example of spectacular and surprising failure, called a padding
oracle attack:

Padding Oracle Attacks

Imagine a webserver that receives CBC-encrypted ciphertexts for processing. When re-
ceiving a ciphertext, the webserver decrypts it under the appropriate key and then checks
whether the plaintext has valid X.923 padding (Section 8.4).

Importantly, suppose that the observable behavior of the webserver changes depending
on whether the padding is valid. You can imagine that the webserver gives a special error
message in the case of invalid padding. Or, even more cleverly (but still realistic), the
difference in response time when processing a ciphertext with invalid padding is enough to
allow the attack to work." The mechanism for learning padding validity is not important —
what is important is simply the fact that an attacker has some way to determine whether
a ciphertext encodes a plaintext with valid padding. No matter how the attacker comes
by this information, we say that the attacker has access to a padding oracle, which gives
the same information as the following subroutine:

PADDINGORACLE(c):
m := Dec(k, c)
return VALIDPAD(m)

We call this a padding oracle because it answers only one specific kind of question about
the input. In this case, the answer that it gives is always a single boolean value.

It does not seem like a padding oracle is leaking useful information, and that there is no
cause for concern. Surprisingly, we can show that an attacker who doesn’t know the en-
cryption key k can use a padding oracle alone to decrypt any ciphertext of its choice! This is
true no matter what else the webserver does. As long as it leaks this one bit of information
on ciphertexts that the attacker can choose, it might as well be leaking everything.

IFor this reason, it is necessary to write the unpadding algorithm so that every execution path through
the subroutine takes the same number of CPU cycles.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Malleability of CBC Encryption

Recall the definition of CBC decryption. If the ciphertext is ¢ = ¢ - - c¢ then the ith
plaintext block is computed as:

m; = F_l(k, Cl') dci—1.
From this we can deduce two important facts:

» Two consecutive blocks (c;_1,¢;) taken in isolation are a valid encryption of m;.
Looking ahead, this fact allows the attacker to focus on decrypting a single block at
a time.

» XORing a ciphertext block with a known value (say, x) has the effect of xoring the
corresponding plaintext block by the same value. In other words, for all x, the ci-
phertext (c;—1 ® x, ¢;) decrypts to m; @ x:

Dec(k, (ci-1 ® x,¢;)) = F'(k, ¢;) ® (cim1 @ x) = (F ' (k,¢;) @ ci1) ® x = m; @ x.

If we send such a ciphertext (c;—; @ x, ¢;) to the padding oracle, we would therefore learn
whether m; @ x is a (single block) with valid padding. Instead of thinking in terms of
padding, it might be best to think of the oracle as telling you whether m; @ x ends in one
of the suffixes 01, 00 02, 00 00 03, etc.

By carefully choosing different values x and asking questions of this form to the
padding oracle, we will show how it is possible to learn all of m;. We summarize the
capability so far with the following subroutine:

// suppose ¢ encrypts an (unknown) plaintext mq|| - - - [|mg
// does m; & x end in one of the valid pading strings?

CHECKXOR(c, i, X):

return PADDINGORACLE(c;—1 @ X, ¢;)

Given a ciphertext c that encrypts an unknown message m, we can see that an adver-
sary can generate another ciphertext whose contents are related to m in a predictable way.
This property of an encryption scheme is called malleability.

Learning the Last Byte of a Block

We now show how to use the CHECKXOR subroutine to determine the last byte of a plaintext
block m. There are two cases to consider, depending on the contents of m. The attacker
does not initially know which case holds:

For the first (and easier) of the two cases, suppose the second-to-last byte of m is
nonzero. We will try every possible byte b and ask whether m @ b has valid padding. Since
m is a block and b is a single byte, when we write m @ b we mean that b is extended on
the left with zeroes. Since the second-to-last byte of m (and hence m @ b) is nonzero, only
one of these possibilities will have valid padding — the one in which m @ b ends in byte
01 . Therefore, if b is the candidate byte that succeeds (i.e., m @ b has valid padding) then
the last byte of m must be b & 01.

163

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Example

Example

Using LEARNLASTBYTE to learn the last byte of a plaintext block:

- a0 42 ?? m = unknown plaintext block

® --- 0000 b b= bytethat causes oracle to return true

= --- a0 42 01 wvalid padding = b & ?? = 01

S 7?7 =01 b

For the other case, suppose the second-to-last byte of m is zero. Then m @ b will have
valid padding for several candidate values of b:

Using LEARNLASTBYTE to learn the last byte of a plaintext block:

- a0 00 ?? --+ @@ 00 ?? m = unknown plaintext
® --- 00 00 by ® --- 0000 b, b; = candidate bytes
= .-- ab 00 01 = ... ab 00 02 two candidates cause oracle to return true

| J

- a0l 00 ?7? --- a0l 00 ?7?
@® --- 00 01 by ® --- 0001 b, same by, by, but change next-to-last byte
= --- ab 01 01 = --- a0 01 02 only one causes oracle to return true

= 77 = b ® 01

Whenever more than one candidate b value yields valid padding, we know that the
second-to-last byte of m is zero (in fact, by counting the number of successful candidates,
we can know exactly how many zeroes precede the last byte of m).

If the second-to-last byte of m is zero, then the second-to-last byte of m & 01 b is
nonzero. The only way for both strings m @ 01 b and m @ b to have valid padding is
when m @ b ends in byte 01. We can re-try all of the successful candidate b values again,
this time with an extra nonzero byte in front. There will be a unique candidate b that is
successful in both rounds, and this will tell us that the last byte of mis b & 01.

The overall approach for learning the last byte of a plaintext block is summarized in
the LEARNLASTBYTE subroutine in Figure 9.1. The set B contains the successful candidate
bytes from the first round. There are at most 16 elements in B after the first round, since
there are only 16 valid possibilities for the last byte of a properly padded block. In the worst
case, LEARNLASTBYTE makes 256 + 16 = 272 calls to the padding oracle (via CHECKXOR).

Learning Other Bytes of a Block

Once we have learned one of the trailing bytes of a plaintext block, it is slightly easier
to learn additional ones. Suppose we know the last 3 bytes of a plaintext block, as in the
example below. We would like to use the padding oracle to discover the 4th-to-last byte.

164

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Example

9.2

Using LEARNPREVBYTE to learn the 4th-to-last byte when the last 3 bytes of the block are
already known.

?? a@ 42 3c m = partially unknown plaintext block
- 00 00 00 04 p = string ending in 04
- 00 a0 42 3c s = known bytes of m

b 00 00 00 y = candidate byte b shifted into place

= --- 000000 04 wvalid padding = 7?7 = b

Since we know the last 3 bytes of m, we can calculate a string x such that m® x ends in
00 00 04.Now we can try xoR’ing the 4th-to-last byte of m @ x with different candidate
bytes b, and asking the padding oracle whether the result has valid padding. Valid padding
only occurs when the result has 00 in its 4th-to-last byte, and this happens exactly when
the 4th-to-last byte of m exactly matches our candidate byte b.

The process is summarized in the LEARNPREVBYTE subroutine in Figure 9.1. In the
worst case, this subroutine makes 256 queries to the padding oracle.

Putting it all together. We now have all the tools required to decrypt any ciphertext
using only the padding oracle. The process is summarized below in the LEARNALL subrou-
tine.

In the worst case, 256 queries to the padding oracle are required to learn each byte of
the plaintext.” However, in practice the number can be much lower. The example in this
section was inspired by a real-life padding oracle attack® which includes optimizations that
allow an attacker to recover each plaintext byte with only 14 oracle queries on average.

What Went Wrong?

CBC encryption provides CPA security, so why didn’t it save us from padding oracle at-
tacks? How was an attacker able to completely obliterate the privacy of encryption?

1. First, CBC encryption (in fact, every encryption scheme we’ve seen so far) has a
property called malleability. Given an encryption c of an unknown plaintext m,
it is possible to generate another ciphertext ¢’ whose contents are related to m in

a predictable way. In the case of CBC encryption, if ciphertext cy|| - - - ||c, encrypts
a plaintext my|| - - - ||mg, then ciphertext (c;—; @ x, ¢;) encrypts the related plaintext
m; @ x.

In short, if an encryption scheme is malleable, then it allows information contained
in one ciphertext to be “transferred” to another ciphertext.

2t might take more than 256 queries to learn the last byte. But whenever LEARNLASTBYTE uses more than
256 queries, the side effect is that you’ve also learned that some other bytes of the block are zero. This saves
you from querying the padding oracle altogether to learn those bytes.

3 How to Break XML Encryption, Tibor Jager and Juraj Somorovsky. ACM CCS 2011.

165

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

LEARNPREVBYTE(C, i, §):

// knowing that m; ends in s,

CHECKXOR(c, i, X): // find rightmost unknown
// if ¢ encrypts (unknown) // byte of m;
// plaintext my - - - my; then pi=ls|+1
// does m; @ x (by itself) forb = 00 to ff:
// have valid padding? y:= b 00 ---00

———
Is]
if CHECKXOR(c, i,p ® s ® y):

return PADDINGORACLE(c¢;—; @ X, ¢;)

LEARNLASTBYTE(c, i): return b

// deduce the last byte of
// plaintext block m; LEARNBLOCK(c, i):
B:=0 // learn entire plaintext block m;
forb = 00 to ff: s := LEARNLASTBYTE(c, i)

if CHECKXOR(c, i, b): do 15 times:

B:=BU{b} b := LEARNPREVBYTE(C, i, §)

if |B| = 1: s:=D|ls

b := only element of B return s

return b @ 01

else: LEARNALL(c):
for each b € B:
if cuEckxor(c,i, 01 b):
return b @ 01

// learn entire plaintext my - - - my
m:=e
¢ := number of non-IV blocks in ¢

fori=1to¢:
m := m||LEARNBLOCK(c, i)
return m

Figure 9.1: Summary of padding oracle attack.

2. Second, you may have noticed that the CPA security definition makes no mention
of the Dec algorithm. The Dec algorithm shows up in our definition for correctness,
but it is nowhere to be found in the £, « libraries. Decryption has no impact on
CPA security!

But the padding oracle setting involved the Dec algorithm — in particular, the ad-
versary was allowed to see some information about the result of Dec applied to
adversarially-chosen ciphertexts. Because of that, the CPA security definition does
not capture the padding oracle attack scenario.

The bottom line is: give an attacker a malleable encryption scheme and access to any
partial information related to decryption, and he/she can get information to leak out in
surprising ways. As the padding-oracle attack demonstrates, even if only a single bit of
information (i.e., the answer to a yes/no question about a plaintext) is leaked about the
result of decryption, this is frequently enough to extract the entire plaintext.

166

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

If we want security even under the padding-oracle scenario, we need a better security
definition and encryption schemes that achieve it. That’s what the rest of this chapter is
about.

Discussion

» Is this arealistic concern? You may wonder whether this whole situation is some-
what contrived just to give cryptographers harder problems to solve. That was prob-
ably a common attitude towards the security definitions introduced in this chapter.
However, in 1998, Daniel Bleichenbacher demonstrated a devastating attack against
early versions of the SSL protocol. By presenting millions of carefully crafted ci-
phertexts to a webserver, an attacker could eventually recover arbitrary SSL session
keys.

In practice, it is hard to make the external behavior of a server not depend on the
result of decryption. This makes CPA security rather fragile in the real world. In
the case of padding oracle attacks, mistakes in implementation can lead to differ-
ent error messages for invalid padding. In other cases, even an otherwise careful
implementation can provide a padding oracle through a timing side-channel (if the
server’s response time is different for valid/invalid padded plaintexts).

As we will see, it is in fact possible to provide security in these kinds of settings, and
with low additional overhead. These days there is rarely a good excuse for using
encryption which is only CPA-secure.

» Padding is in the name of the attack. But padding is not the culprit. The culprit is
using a (merely) CPA-secure encryption scheme while allowing some information
to leak about the result of decryption. The exercises expand on this idea further.

» If padding is added to only the last block of the plaintext, how can this at-
tack recover the entire plaintext? This common confusion is another reason to
not place so much blame on the padding scheme. A padding oracle has the following
behavior: “give me an encryption of my|| - - - [|m, and I'll tell you some information
about m¢ (whether it ends with a certain suffix).” Indeed, the padding oracle checks
only the last block. However, CBC mode has the property that if you have an en-
cryption of my|| - - - ||me, then you can easily construct a different ciphertext that
encrypts my|| - - - ||mg—;. If you send this ciphertext to the padding oracle, you will
get information about my_;. By modifying the ciphertext (via the malleability of
CBC), you give different plaintext blocks the chance to be the “last block” that the
padding oracle looks at.

» The attack seems superficially like brute force, but it is not: The attack makes 256
queries per byte of plaintext, so it costs about 256¢ queries for a plaintext of £ bytes.
Brute-forcing the entire plaintext would cost 256 since that’s how many (-byte
plaintexts there are. So the attack is exponentially better than brute force. The
lesson is: brute-forcing small pieces at a time is much better then brute-forcing the
entire thing.

167

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.3

Definition 9.1
(CCA security)

Defining CCA Security

Our goal now is to develop a new security definition — one that considers an adversary that
can construct malicious ciphertexts and observe the effects caused by their decryption. We
will start with the basic approach of CPA security, with left and right libraries that differ
only in which of two plaintexts they encrypt.

In a typical system, an adversary might be able to learn only some specific partial
information about the Dec process. In the padding oracle attack, the adversary was able
to learn only whether the result of decryption had valid padding.

However, we are trying to come up with a security definition that is useful no mat-
ter how the encryption scheme is deployed. How can we possibly anticipate every kind of
partial information that might make its way to the adversary in every possible usage of the
encryption scheme? The safest choice is to be as pessimistic as possible, as long as we end
up with a security notion that we can actually achieve in the end. So let’s just allow the
adversary to totally decrypt arbitrary ciphertexts of its choice. In other words, if we
can guarantee security when the adversary has full information about decrypted cipher-
texts, then we certainly have security when the adversary learns only partial information
about decrypted ciphertexts (as in a typical real-world system).

But this presents a significant problem. An adversary can do ¢* := EAVESDROP(m [, mg)
to obtain a challenge ciphertext, and then immediately ask for that ciphertext ¢* to be
decrypted. This will obviously reveal to the adversary whether it is linked to the left or
right library.

So, simply providing unrestricted Dec access to the adversary cannot lead to a reason-
able security definition (it is a security definition that can never be satisfied). The simplest
way to patch this obvious problem with the definition is to allow the adversary to ask for
the decryption of any ciphertext, except those produced in response to EAVESDROP
queries. In doing so, we arrive at the final security definition: security against chosen-
ciphertext attacks, or CCA-security:

Let 3 be an encryption scheme. We say that % has security against chosen-ciphertext
attacks (CCA security) if L= = L> . where:

cca-L cca-R’
b b
Lcca-L ‘Ecca-R
k < X.KeyGen k < X.KeyGen
S:=0 S:=0
EAVESDROP(mp, mp € 2. M): EAVESDROP(myp, mp € 2. M):
if |[mg| # |mg| return err if |[mg| # |mg| return err
¢ :=X.Enc(k,myp) ¢ := X.Enc(k, mg)
S:=8SU{c} S:=8SU{c}
return ¢ return ¢
DECRYPT(c € X.C): DECRYPT(c € X.C):
ifc € Sreturnerr ifc € Sreturnerr
return X.Dec(k, c) return X.Dec(k, c)

168

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Example

Example

In this definition, the set S keeps track of the ciphertexts that have been generated by
the EAvVESDROP subroutine. The DECRYPT subroutine refuses to decrypt these ciphertexts,
but will gladly decrypt any other ciphertext of the adversary’s choice.

An Example

The padding oracle attack already demonstrates that CBC mode does not provide secu-
rity in the presence of chosen ciphertext attacks. But that attack was quite complicated
since the adversary was restricted to learn just 1 bit of information at a time about a de-
crypted ciphertext. An attack against full CCA security can be much more direct, since
the adversary has full access to decrypted ciphertexts.

Consider the adversary below attacking the CCA security of CBC mode (with block length
blen)

A

¢ = collc1]|ez := EAVESDROP(@2PleN, 12blen)
m := DECRYPT(col|c1)

? bl
return m = 0°'"

It can easily be verified that this adversary achieves advantage 1 distinguishing L., from
Lcca-r- The attack uses the fact (also used in the padding oracle attack) that if collc1||c2
encrypts my||my, then co||c; encrypts my. To us, it is obvious that ciphertext cyl|cy is related
to collc1]|c2. Unfortunately for CBC mode, the security definition is not very clever — since
colle1 is simply different than cyl|c1||ca, the DECRYPT subroutine happily decrypts it.

Perhaps unsurprisingly, there are many very simple ways to catastrophically attack the CCA
security of CBC-mode encryption. Here are some more (where x denotes the result of flipping
every bit in x):

ﬂl
colletllca := EAVESDROP(02ben, 12blem)
m := DECRYPT(co||c1|[c2)
if m begins with 02" return 1 else return 0

ﬂ”
. 2blen q2blen
collcillez := EAVESDROP(Q4P'€" 14blem)
m := DECRYPT(cq||cq||c2)

?
return m = 1blen||gblen

The first attack uses the fact that modifying c, has no effect on the first plaintext block. The
second attack uses the fact that flipping every bit in the IV flips every bit in m.

Again, in all of these cases, the DECRYPT subroutine is being called on a different (but
related) ciphertext than the one returned by EAVESDROP.

169

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Discussion

So if I use a CCA-secure encryption scheme, I should never decrypt a ciphertext
that I encrypted myself?

Remember: when we define the Enc and Dec algorithms of an encryption scheme,
we are describing things from the normal user’s perspective. As a user of an encryption
scheme, you can encrypt and decrypt whatever you like. It would indeed be strange if you
encrypted something knowing that it should never be decrypted. What’s the point?

The security definition describes things from the attacker’s perspective. The Lo«
libraries tell us what are the circumstances under which the encryption scheme provides se-
curity? They say (roughly):

an attacker can’t tell what’s inside a ciphertext c*, even if she has some partial
information about that plaintext, even if she had some partial influence over
the choice of that plaintext, and even if she is allowed to decrypt any other
ciphertext she wants.

Of course, if a real-world system allows an attacker to learn the result of decrypting c*,
then by definition the attacker learns what’s inside that ciphertext.

CCA security is deeply connected with the concept of malleability. Malleability
means that, given a ciphertext that encrypts an unknown plaintext m, it is possible to gen-
erate a different ciphertext that encrypts a plaintext that is related to m in a predictable
way. For example:

» If ¢ollci]|cz is @ CBC encryption of m;||mz, then co||c; is a CBC encryption of m;.

» If col|c1||cy is a CBC encryption of m; ||m;, then co||c1]|c2]|02" is a CBC encryption
of some plaintext that begins with my||m,.

» If ¢y||c; is a CBC encryption of my, then (¢y @ x)||c; is a CBC encryption of m; & x.

Note from the second example that we don’t need to know exactly the relationship between
the old and new ciphertexts.

If an encryption scheme is malleable, then a typical attack against its CCA security
would work as follows:

1. Request an encryption c of some plaintext.
2. Applying the malleability of the scheme, modify ¢ to some other ciphertext c’.
3. Ask for ¢’ to be decrypted.

Since ¢’ # ¢, the security library allows ¢’ to be decrypted. The malleability of the scheme
says that the contents of ¢’ should be related to the contents of c¢. In other words, seeing
the contents of ¢’ should allow the attacker to determine what was initially encrypted in
c.

170

Draft: January 3, 2021

CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Definition 9.2

Pseudorandom Ciphertexts

We can also modify the pseudorandom-ciphertexts security definition (CPA$ security) in
a similar way:

Let ¥ be an encryption scheme. We say that ¥ has pseudorandom ciphertexts in the

(CCAS$ security)

DECRYPT(c € X.C):

if c € S return err
return X.Dec(k, ¢)

DECRYPT(c € X.C):

if c € Sreturn err
return X.Dec(k, ¢)

presence of chosen-ciphertext attacks (CCAS$ security) if chca$_rea| & chca$_ran 4 Where:
5 5
cca$-real cca$-rand
k < 3.KeyGen k « X.KeyGen
S:=0 S:=0
ctxT(m € 2. M): cTxt(m € 2. M):
c := 2.Enc(k, m) ¢« 2.C(Im|)
S:=8U{c} S:=8SU{c}
return ¢ return ¢

Construction 9.3

Just like for CPA security, if a scheme has CCA$ security, then it also has CCA security,
but not vice-versa. See the exercises.

A Simple CCA-Secure Scheme

Recall the definition of a strong pseudorandom permutation (PRP) (Definition 6.13). A
strong PRP is one that is indistinguishable from a randomly chosen permutation, even to
an adversary that can make both forward (i.e., to F) and reverse (i.e., to F~!) queries.

This concept has some similarity to the definition of CCA security, in which the ad-
versary can make queries to both Enc and its inverse Dec. Indeed, a strong PRP can be
used to construct a CCA-secure encryption scheme in a natural way:

Let F be a pseudorandom permutation with block length blen = n + A. Define the following
encryption scheme with message space M = {0, 1}":

KeyGen: Enc(k, m): Dec(k, ¢):
k—{0,1}% re{0,1}4 v:=FY(k,c)
return k return F(k, m||r) return first n bits of v

In this scheme, m is encrypted by appending a random value r to it, then applying a
PRP. While this scheme is conceptually quite simple, it is generally not used in practice
since it requires a block cipher with a fairly large block size, and these are rarely encoun-
tered.

We can informally reason about the security of this scheme as follows:

171

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Cla

L

im9.4

Proof

> .
cca$-real”

» Imagine an adversary linked to one of the CCA libraries. As long as the random
value r does not repeat, all inputs to the PRP are distinct. The guarantee of a pseu-
dorandom function/permutation is that its outputs (which are the ciphertexts in this
scheme) will therefore all look independently uniform.

» The CCA library prevents the adversary from asking for ¢ to be decrypted, if ¢ was
itself generated by the library. For any other value ¢’ that the adversary asks to be
decrypted, the guarantee of a strong PRP is that the result will look independently
random. In particular, the result will not depend on the choice of plaintexts used to
generate challenge ciphertexts. Since this choice of plaintexts is the only difference
between the two CCA libraries, these decryption queries (intuitively) do not help
the adversary.

We now prove the CCA security of Construction 9.3 formally:

If F is a strong PRP (Definition 6.13) then Construction 9.3 has CCAS$ security (and therefore
CCA security).

As usual, we prove the claim in a sequence of hybrids.

LZ

cca$-real
k — {0,1}*
S:=0

cTxT(m):
r—{0,1}*
¢ := F(k,m||r)
S :=8U{c}

return ¢

The starting point is ‘Eczca$-real’

Y refers to Construction 9.3.

as expected, where

DECRYPT(c € X.C):

if c € S return err
return first n bits of F~!(k, c)

172

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S=0

T, Tiny := empty assoc. arrays

cTxT(m):
r—{0,1}*
if T[m||r] undefined:

¢ « {0,1}b"\ T.values ') o
T[ml|r] == ¢; Ton[c] := m||r We have applied the strong PRP security (Defini-

tion 6.13) of F, skipping some standard intermedi-

¢ := Tlm|ir] ate steps. We factored out all invocations of F and
S=8U{c} F~!in terms of the Lgprp-real library, replaced that
return ¢

library with Lgprp-rand, and finally inlined it.

DECRYPT(c € X.C):

ifc € Sreturn err

if Tjny[c] undefined:
m||r « {0, 1} \ T;,,.values
Tinvlc] := mlr; T[m]||r] := ¢

return first n bits of Tj,,[c]

This proof has some subtleties, so it’s a good time to stop and think about what needs to
be done. To prove CCA$-security, we must reach a hybrid in which the responses of cTxT
are uniform. In the current hybrid there are two properties in the way of this goal:

» The ciphertext values c are sampled from {0, 1}%"\ T.values, rather than {0, 1}%".

» When the if-condition in cTXT is false, the return value of cTXT is not a fresh ran-
dom value but an old, repeated one. This happens when T[m||r] is already defined.
Note that both cTxT and DECRYPT assign to T, so either one of these subroutines
may be the cause of a pre-existing T[m||r] value.

Perhaps the most subtle fact about our current hybrid is that arguments of cTxT can
affect responses from DECRYPT! In cTXT, the library assigns m||r to a value Tj,,[c]. Later
calls to DECrYPT will not read this value directly; these values of ¢ are off-limits due to
the guard condition in the first line of DECRYPT. However, DECRYPT samples a value from
{0, 1}bn\ T;,,.values, which indeed uses the values Tiny[c]. To show CCA$ security, we
must remove this dependence of DECRYPT on previous values given to CTXT.

173

Draft: January 3, 2021

CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S = @; ﬂ =] @
T, Tiny := empty assoc. arrays
cTxT(m):

r— {0,1}*

if T[m||r] undefined:
¢ « {0, 1}2n\ T values
T[ml|r] := ¢; Tiny[c] := m||r
R:=RU{r}

¢:=T[m||r]

S:=8SU{c}

return ¢

DECRYPT(c € X.C):
if c € Sreturnerr
if Tiny[c] undefined:
m||r « {0, 1}b€n\ T, .values
Tinv[c] = m”r; T[er] =c
R:=RUA{r}

return first n bits of Tjy,,[c]

S=0;, R:=0
T, Tiny := empty assoc. arrays

cTxT(m):

r— {6, }1\R

if T[m||r] undefined:
c — {0’ 1}blen
T[mlr] := ¢; Tinvlc] := ml|r
R:=RU{r}

c := T[m||r]

S:=8SU{c}

return c

DECRYPT(c € X.C):
if c € S return err
if Tiny[c] undefined:
m||r — {0, 1}Plen
Tinvlc] := mllr; T[ml|r] :=c
R:=RU{r}

return first n bits of Tjy,,[c]

We have added some book-keeping that is not used
anywhere. Every time an assignment of the form
T[m]||r] happens, we add r to the set R. Looking
ahead, we eventually want to ensure that r is cho-
sen so that the if-statement in cTXT is always taken,
and the return value of cTXT is always a fresh ran-
dom value.

We have applied Lemma 4.12 three separate times.
The standard intermediate steps (factor out, swap
library, inline) have been skipped, and this shows
only the final result.

In ctxT, we've added a restriction to how r is sam-
pled. Looking ahead, sampling r in this way means
that the if-statement in cTXT is always taken.

In cTxT, we've removed the restriction in how c is
sampled. Since c is the final return value of cTxT,
this gets us closer to our goal of this return value
being uniformly random.

In DECRYPT, we have removed the restriction in
how m||r is sampled. As described above, this is
because Tj;y.values contains previous arguments of
CTXT, and we don’t want these arguments to affect
the result of DECRYPT in any way.

174

Draft: January 3, 2021

CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S=0;, R:=0
T, Tiny := empty assoc. arrays
cTxT(m):

re—{0,1}*\ R

¢ « {0, 1}blen

T[ml|r] := ¢; Tinv[c] := ml|r

R:=RU{r}
S:=Su{c}
return ¢

DECRYPT(c € X.C):

if c € S return err

if Tiny[c] undefined:
m||r « {0, 1}blen
Timlc] := m|lr; T[ml|lr] :=c
R:=RU{r}

return first n bits of Tjy,,[c]

S=0;, R:=0
T, Tiny := empty assoc. arrays

cTxT(m):
re{0,1}*\R
c — {0’ 1}blen
/] T[m||r] := ¢; Tiny[c] := m||r

R :=RU{r}
S:=8Su{c}
return ¢

DECRYPT(c € X.C):
if c € Sreturn err
if Tiny[c] undefined:
m||r « {0, 1}bln
Timlc] := m|lr; T[m|lr] :=c
R:=RU{r}

return first n bits of Tjy,,[c]

In the previous hybrid, the if-statement in cTXT is
always taken. This is because if T[m||r] is already
defined, then r would already be in R, but we are
sampling r to avoid everything in R. We can there-
fore simply execute the body of the if-statement
without actually checking the condition.

In the previous hybrid, no line of code ever reads
from T; they only write to T. It has no effect to re-
move a line that assigns to T, so we do so in CTXT.

CTXT also writes to Tj,y[c], but for a value ¢ € S.
The only line that reads from Tj,, is in DECRYPT,
but the first line of DECRYPT prevents it from be-
ing reached for such a ¢ € S. It therefore has no
effect to remove this assignment to Tj,,,.

175

Draft: January 3, 2021

CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

L

> .
cca$-rand”

S=0;, / R=0
T, Tiny := empty assoc. arrays

cTxT(m):
/l r—{0, 1} \ R
¢ — {0, 1}bln
// R:=RU{r}
S:=8U{c}

return ¢

DECRYPT(c € X.C):

if c € Sreturnerr

if Tiny[c] undefined:
m||r « {0, l}b[“’”
Tinvlc] := m||r; T[m||r] := ¢
/I R:=RU{r}

return first n bits of Tjy,,[c]

S=0

T, Tiny := empty assoc. arrays

cTxT(m):
C — {0’ l}blen
S:=8SU{c}

return c

DECRYPT(c € 2.C):
if c € Sreturn err
if Tiyy[c] undefined:
m||r « {0, 1}2€" \T;,,.values
Tinvlc] := ml||r; T[m||r] :=c¢
return first n bits of Tjy,,[c]

LZ

cca$-rand

k — {0,1}*
S:=0

cTxT(m):
c « {0, 1}Plen
S:=8U{c}

return ¢

DECRYPT(c € X.C):

ifc € Sreturnerr
return first n bits of F~!(k, c)

Consider all the ways that R is used in the previous
hybrid. The firstline of cTxT uses R to sample r, but
then r is subsequently used only to further update
R and nowhere else. Both subroutines use R only
to update the value of R. It has no effect to simply
remove all lines that refer to variable R.

We have applied Lemma 4.12 to the sampling step
in DECRYPT. The standard intermediate steps have
been skipped. Now the second if-statement in
DECRYPT exactly matches Lg,p-rand-

We have applied the strong PRP security of F to
replace Lsprp-rand With Lsprp-real- The standard in-
termediate steps have been skipped. The result is
LccafB—rand-

176

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.1.

9.2.

9.3.

9.4.

We showed that £ x L[>

cca$-real ~ “cca$-rand’

so the scheme has CCA$ security.]

Exercises

There is nothing particularly bad about padding schemes. They are only a target because
padding is a commonly used structure in plaintexts that is verified at the time of decryp-
tion.

A null character is simply the byte 00 . We say that a string is properly null terminated
if its last character is null, but no other characters are null. Suppose you have access to
the following oracle:

NULLTERMORACLE(¢):
m := Dec(k,c)
if m is properly null terminated:
return true
else return false

Suppose you are given a CTR-mode encryption of an unknown (but properly null termi-
nated) plaintext m* under unknown key k. Suppose that plaintexts of arbitrary length are
supported by truncating the CTR-stream to the appropriate length before xoring with the
plaintext.

Show how to completely recover m* in the presence of this null-termination oracle.

Show how to completely recover the plaintext of an arbitrary CBC-mode ciphertext in the
presence of the following oracle:

NULLORACLE(c):
m := Dec(k, c)
if m contains a null character:
return true
else return false

Assume that the victim ciphertext encodes a plaintext that does not use any padding (its
plaintext is an exact multiple of the blocklength).

Show how to perform a padding oracle attack, to decrypt arbitrary messages that use
PKCS#7 padding (where all padded strings end with 01, 62 02, 03 03 03, etc.).

Sometimes encryption is as good as decryption, to an adversary.

(a) Suppose you have access to the following encryption oracle, where s is a secret that
is consistent across all calls:

ECBORACLE(m):

//'k, s are secret
return ECB.Enc(k, m||s)

177

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

* 9.5.

9.6.

9.7.

9.8.

9.9.

Yes, this question is referring to the awful ECB encryption mode (Construction 8.1).
Describe an attack that efficiently recovers all of s using access to ECBORACLE. Assume
that if the length of m||s is not a multiple of the blocklength, then ECB mode will pad
it with null bytes.

(b) Now suppose you have access to a CBC encryption oracle, where you can control the
IV that is used:

CBCORACLE(iv, m):

//'k, s are secret
return CBC.Enc(k, iv, m||s)

Describe an attack that efficiently recovers all of s using access to CBCORACLE. As
above, assume that m||s is padded to a multiple of the blocklength in some way. It is
possible to carry out the attack no matter what the padding method is, as long as the
padding method is known to the adversary.

Show how a padding oracle (for CBC-mode encryption with X.923 padding) can be used
to generate a valid encryption of any chosen plaintext, under the same (secret) key
that the padding oracle uses. In this problem, you are not given access to an encryption
subroutine, or any valid ciphertexts — only the padding oracle subroutine.

Prove formally that CCA$ security implies CCA security.

Let T be an encryption scheme with message space {0, 1}" and define 32 to be the follow-
ing encryption scheme with message space {0, 1}2":

Dec(k, (¢1,¢2)):

KeyGen: Enc(k, m): my = >.Dec(k, ¢1)
k «— Z'Keycen €1 = Z'Enc(k’ mleﬂ) mz = Z.Dec(k, Cz)
¢z := 2.Enc(k, myight) if err € {my, my}:
return k
return (cy, cz) return err

else return mq||m,

(a) Prove that if ¥ has CPA security, then so does 32.

(b) Show that even if £ has CCA security, >? does not. Describe a successful distinguisher
and compute its distinguishing advantage.

Show that the following block cipher modes do not have CCA security. For each one,
describe a successful distinguisher and compute its distinguishing advantage.

(a) OFB mode (b) CBC mode (c) CTR mode

Show that none of the schemes in Exercise 7.7 have CCA security. For each one, describe
a successful distinguisher and compute its distinguishing advantage.

178

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.10.

9.11.

9.12.

Let F be a secure block cipher with blocklength A. Below is an encryption scheme for
plaintexts M = {0, 1}*. Formally describe its decryption algorithm and show that it does
not have CCA security.

Enc(k, m):
KeyGen: Cr e {01}
k — {0,1}* ¢ = F(k,r)
return k cy:=r @ F(k,m)
return (cy, ¢2)

Let F be a secure block cipher with blocklength A. Below is an encryption scheme for
plaintexts M = {0, 1}*. Formally describe its decryption algorithm and show that it does
not have CCA security.

KeyGen: Enc((kl, k2), m):
ky — {0,1}* r — {0,1}*
ky — {0,1}* c1 = F(ky,r)
return (kq, kp) ¢y = F(ki,r ® m @ ky)
return (cq, ¢)

Alice has the following idea for a CCA-secure encryption. To encrypt a single plaintext
block m, do normal CBC encryption of 6°"||m. To decrypt, do normal CBC decryption
but give an error if the first plaintext block is not all zeroes. Her reasoning is:

» The ciphertext has 3 blocks (including the IV). If an adversary tampers with the IV
or the middle block of a ciphertext, then the first plaintext block will no longer be all
zeroes and the ciphertext is rejected.

» If an adversary tampers with the last block of a ciphertext, then the CBC decryption
results in 0%°"||m’ where m’ is unpredictable from the adversary’s point of view.
Hence the result of decryption (m’) will leak no information about the original m.

More formally, let CBC denote the encryption scheme obtained by using a secure PRF in
CBC mode. Below we define an encryption scheme 3’ with message space {0, 1} and
ciphertext space {0, 1}3Pln:

>’.KeyGen:
k < CBC.KeyGen
return k

>’.Dec(k, ¢):
my||my := CBC.Dec(k, ¢)
if m; = blen,
return my

>’ .Enc(k, m):
M else return err

return CBC.Enc(k, 02"||m)

Show that X" does not have CCA security. Describe a distinguisher and compute its dis-
tinguishing advantage. What part of Alice’s reasoning was not quite right?

179

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.13.

9.14.

9.15.

CBC and OFB modes are malleable in very different ways. For that reason, Mallory claims
that encrypting a plaintext (independently) with both modes results in CCA security, when
the Dec algorithm rejects ciphertexts whose OFB and CBC plaintexts don’t match. The
reasoning is that it will be hard to tamper with both ciphertexts in a way that achieves the
same effect on the plaintext.

Let CBC denote the encryption scheme obtained by using a secure PRF in CBC mode. Let
OFB denote the encryption scheme obtained by using a secure PRF in OFB mode. Below
we define an encryption scheme X’

>’ KeyGen:
kcpe «— CBC.KeyGen
kot < OFB.KeyGen
return (kcpe, Kofb)

%" .Dec((kebe, Kofb), (¢, ¢”)):
m := CBC.Dec(kcpe, €)
m’ := OFB.Dec(kofp, ¢’)
ifm=m"

return m

Z’-Enc((kcbc, kofb), m):
¢ := CBC.Enc(k¢pe, m)
¢’ := OFB.Enc(kofp, m)
return (c, ¢”)

else return err

Show that X’ does not have CCA security. Describe a distinguisher and compute its dis-
tinguishing advantage.

This problem is a generalization of the previous one. Let 31 and X, be two (possibly differ-
ent) encryption schemes with the same message space M. Below we define an encryption
scheme >

>’.Dec((kq, ko), (c1, c2)):

>’ KeyGen: > .Enc((ky, k3), m): my := %1.Dec(ky, ¢;)
ki « 21.KeyGen ¢y = 21.Enc(k{, m) my = 2,.Dec(ks, ¢2)
ky « 3,.KeyGen ¢y := Xg.Enc(ky, m) if my = my:
return (kq, k») return (cq, ¢o) return my

else return err

Show that 3’ does not have CCA security, even if both ¥; and ¥, have CCA (yes, CCA)
security. Describe a distinguisher and compute its distinguishing advantage.

Consider any padding scheme consisting of subroutines paD (which adds valid padding
to its argument) and vALIDPAD (which checks its argument for valid padding and returns
true/false). Assume that VALIDPAD(PAD(x)) = true for all strings x.

Show that if an encryption scheme X has CCA security, then the following two libraries
are indistinguishable:

180

Draft: January 3, 2021

CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

5
‘Epad—L
k « 3.KeyGen

EAVESDROP(mp, mg € 2. M):

if |mp| # |mg| return err
return X.Enc(k, PAD(mp))

PADDINGORACLE(c € X.C):

return vALIDPAD(Z.Dec(k, ¢))

b
‘[:pad-R
k « 3.KeyGen

EAVESDROP(myp, mg € X.M):

if |mg| # |mg| return err
return %.Enc(k, PAD(mR))

PADDINGORACLE(c € X.C):

return VALIDPAD(2.Dec(k, ¢))

That is, a CCA-secure encryption scheme hides underlying plaintexts in the presence of
padding-oracle attacks.

Note: The distinguisher can even send a ciphertext ¢ obtained from EAVESDROP as an ar-
gument to PADDINGORACLE. Your proof should somehow account for this when reducing
to the CCA security of X.

9.16. Show that an encryption scheme ¥ has CCA$ security if and only if the following two
libraries are indistinguishable:

b
‘I’right
I k « X.KeyGen
5 D := empt
:= empty assoc. array
k < X.KeyGen

EAVESDROP(m € . M):

EAVESDROP(m € X.M): ¢ — 3.C(Im|)
return X.Enc(k, m) Dlc]:==m
return ¢

DECRYPT(c € X.C):
return X.Dec(k, ¢)

DECRYPT(c € X.C):
if D[c] exists: return D[c]
else: return X.Dec(k, ¢)

Note: In Lef, the adversary can obtain the decryption of any ciphertext via DECRYPT. In
Liight, the DECRYPT subroutine is “patched” (via D) to give reasonable answers to cipher-
texts generated in EAVESDROP.

181

